Fotios S. Konstantakopoulos;Eleni I. Georga;Dimitrios I. Fotiadis
{"title":"A Review of Image-Based Food Recognition and Volume Estimation Artificial Intelligence Systems","authors":"Fotios S. Konstantakopoulos;Eleni I. Georga;Dimitrios I. Fotiadis","doi":"10.1109/RBME.2023.3283149","DOIUrl":null,"url":null,"abstract":"The daily healthy diet and balanced intake of essential nutrients play an important role in modern lifestyle. The estimation of a meal's nutrient content is an integral component of significant diseases, such as diabetes, obesity and cardiovascular disease. Lately, there has been an increasing interest towards the development and utilization of smartphone applications with the aim of promoting healthy behaviours. The semi – automatic or automatic, precise and in real-time estimation of the nutrients of daily consumed meals is approached in relevant literature as a computer vision problem using food images which are taken via a user's smartphone. Herein, we present the state-of-the-art on automatic food recognition and food volume estimation methods starting from their basis, i.e., the food image databases. First, by methodically organizing the extracted information from the reviewed studies, this review study enables the comprehensive fair assessment of the methods and techniques applied for segmenting food images, classifying their food content and computing the food volume, associating their results with the characteristics of the used datasets. Second, by unbiasedly reporting the strengths and limitations of these methods and proposing pragmatic solutions to the latter, this review can inspire future directions in the field of dietary assessment systems.","PeriodicalId":39235,"journal":{"name":"IEEE Reviews in Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":17.2000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10144465","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Reviews in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10144465/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1
Abstract
The daily healthy diet and balanced intake of essential nutrients play an important role in modern lifestyle. The estimation of a meal's nutrient content is an integral component of significant diseases, such as diabetes, obesity and cardiovascular disease. Lately, there has been an increasing interest towards the development and utilization of smartphone applications with the aim of promoting healthy behaviours. The semi – automatic or automatic, precise and in real-time estimation of the nutrients of daily consumed meals is approached in relevant literature as a computer vision problem using food images which are taken via a user's smartphone. Herein, we present the state-of-the-art on automatic food recognition and food volume estimation methods starting from their basis, i.e., the food image databases. First, by methodically organizing the extracted information from the reviewed studies, this review study enables the comprehensive fair assessment of the methods and techniques applied for segmenting food images, classifying their food content and computing the food volume, associating their results with the characteristics of the used datasets. Second, by unbiasedly reporting the strengths and limitations of these methods and proposing pragmatic solutions to the latter, this review can inspire future directions in the field of dietary assessment systems.
期刊介绍:
IEEE Reviews in Biomedical Engineering (RBME) serves as a platform to review the state-of-the-art and trends in the interdisciplinary field of biomedical engineering, which encompasses engineering, life sciences, and medicine. The journal aims to consolidate research and reviews for members of all IEEE societies interested in biomedical engineering. Recognizing the demand for comprehensive reviews among authors of various IEEE journals, RBME addresses this need by receiving, reviewing, and publishing scholarly works under one umbrella. It covers a broad spectrum, from historical to modern developments in biomedical engineering and the integration of technologies from various IEEE societies into the life sciences and medicine.