Bioreactor configurations for adventitious root culture: recent advances toward the commercial production of specialized metabolites.

IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Critical Reviews in Biotechnology Pub Date : 2024-08-01 Epub Date: 2023-07-27 DOI:10.1080/07388551.2023.2233690
Hosakatte Niranjana Murthy, Kadanthottu Sebastian Joseph, Kee Yoeup Paek, So Young Park
{"title":"Bioreactor configurations for adventitious root culture: recent advances toward the commercial production of specialized metabolites.","authors":"Hosakatte Niranjana Murthy, Kadanthottu Sebastian Joseph, Kee Yoeup Paek, So Young Park","doi":"10.1080/07388551.2023.2233690","DOIUrl":null,"url":null,"abstract":"<p><p><i>In vitro</i> plant cell and organ cultures are appealing alternatives to traditional methods of producing valuable specialized metabolites for use as: pharmaceuticals, food additives, cosmetics, perfumes, and agricultural chemicals. Cell cultures have been adopted for the production of specialized metabolites in certain plants. However, in certain other systems, adventitious roots are superior to cell suspension cultures as they are organized structures that accumulate high levels of specialized metabolites. The cultivation of adventitious roots has been investigated in various bioreactor systems, including: mechanically agitated, pneumatically agitated, and modified bioreactors. The main relevance and importance of this work are to develop a long-lasting industrial biotechnological technology as well as to improve the synthesis of these metabolites from the plant <i>in vitro</i> systems. These challenges are exacerbated by: the peculiarities of plant cell metabolism, the complexity of specialized metabolite pathways, the proper selection of bioreactor systems, and bioprocess optimization. This review's major objective is to analyze several bioreactor types for the development of adventitious roots, as well as the advantages and disadvantages of each type of bioreactor, and to describe the strategies used to increase the synthesis of specialized metabolites. This review also emphasizes current advancements in the field, and successful instances of scaled-up cultures and the generation of specialized metabolites for commercial purposes are also covered.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"837-859"},"PeriodicalIF":8.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07388551.2023.2233690","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/7/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In vitro plant cell and organ cultures are appealing alternatives to traditional methods of producing valuable specialized metabolites for use as: pharmaceuticals, food additives, cosmetics, perfumes, and agricultural chemicals. Cell cultures have been adopted for the production of specialized metabolites in certain plants. However, in certain other systems, adventitious roots are superior to cell suspension cultures as they are organized structures that accumulate high levels of specialized metabolites. The cultivation of adventitious roots has been investigated in various bioreactor systems, including: mechanically agitated, pneumatically agitated, and modified bioreactors. The main relevance and importance of this work are to develop a long-lasting industrial biotechnological technology as well as to improve the synthesis of these metabolites from the plant in vitro systems. These challenges are exacerbated by: the peculiarities of plant cell metabolism, the complexity of specialized metabolite pathways, the proper selection of bioreactor systems, and bioprocess optimization. This review's major objective is to analyze several bioreactor types for the development of adventitious roots, as well as the advantages and disadvantages of each type of bioreactor, and to describe the strategies used to increase the synthesis of specialized metabolites. This review also emphasizes current advancements in the field, and successful instances of scaled-up cultures and the generation of specialized metabolites for commercial purposes are also covered.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不定根培养的生物反应器配置:专门代谢物商业化生产的最新进展。
体外植物细胞和器官培养是生产有价值的特殊代谢物的传统方法的一种有吸引力的替代方法,这些代谢物可用作:药品、食品添加剂、化妆品、香水和农用化学品。细胞培养已被用于生产某些植物的特殊代谢物。然而,在某些其他系统中,不定根比细胞悬浮培养物更优越,因为它们是有组织的结构,能积累大量的特化代谢物。在各种生物反应器系统(包括机械搅拌、气动搅拌和改良生物反应器)中对不定根的培养进行了研究。这项工作的主要意义和重要性在于开发一种长效的工业生物技术,以及改进体外系统中植物代谢物的合成。植物细胞新陈代谢的特殊性、特殊代谢物途径的复杂性、生物反应器系统的正确选择以及生物过程的优化等因素加剧了这些挑战。本综述的主要目的是分析几种用于发展不定根的生物反应器类型,以及每种生物反应器的优缺点,并介绍用于提高特殊代谢物合成的策略。本综述还强调了该领域的最新进展,并介绍了扩大培养规模和产生用于商业目的的特殊代谢物的成功实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Critical Reviews in Biotechnology
Critical Reviews in Biotechnology 工程技术-生物工程与应用微生物
CiteScore
20.80
自引率
1.10%
发文量
71
审稿时长
4.8 months
期刊介绍: Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to keep abreast of the concepts, data, and methodologies evolved by continuing research. This journal provides a forum of critical evaluation of recent and current publications and, periodically, for state-of-the-art reports from various geographic areas around the world. Contributing authors are recognized experts in their fields, and each article is reviewed by an objective expert to ensure accuracy and objectivity of the presentation.
期刊最新文献
Recent advances and biotechnological applications of RNA metabolism in plant chloroplasts and mitochondria. APETALA2/ethylene-responsive factors in higher plant and their roles in regulation of plant stress response. Fashion meets science: how advanced breeding approaches could revolutionize the textile industry. Insight into recent advances in microalgae biogranulation in wastewater treatment. Advances in Vibrio-related infection management: an integrated technology approach for aquaculture and human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1