John O Osborne, Geoffrey M Minett, Ian B Stewart, Stewart Trost, Christopher Drovandi, Joseph T Costello, Toby G Pavey, David N Borg
{"title":"Evidence that heat acclimation training may alter sleep and incidental activity.","authors":"John O Osborne, Geoffrey M Minett, Ian B Stewart, Stewart Trost, Christopher Drovandi, Joseph T Costello, Toby G Pavey, David N Borg","doi":"10.1080/17461391.2022.2124386","DOIUrl":null,"url":null,"abstract":"<p><p>This randomized cross-over study tested the hypothesis that heat acclimation training would detrimentally affect sleep variables and alter incidental physical activity compared to a thermoneutral training control condition. Eight recreationally trained males (V̇O<sub>2peak</sub> 49±4.9 mL<sup>.</sup>kg<sup>-1.</sup>min<sup>-1</sup>) completed two separate interventions separated by at least 31 days: 5 consecutive day training blocks of moderate-intensity cycling (60 min·day<sup>-1</sup> at 50% peak power output) in a hot (34.9±0.7 °C and 53±4 % relative humidity) and a temperate (22.2±2.6 °C; 65±8 % relative humidity) environment. Wrist-mounted accelerometers were worn continuously for the length of the training blocks and recorded physical activity, sleep quality and quantity. Data were analysed in a Bayesian framework, with the results presented as the posterior probability that a coefficient was greater or less than zero. Compared to the temperate training environment, heat acclimation impaired sleep efficiency (Pr <i>β</i><0 = .979) and wake on sleep onset (Pr <i>β</i>>0 = .917). Daily sedentary time was, on average, 35 min longer (Pr <i>β</i>>0 = .973) and light physical activity time 18 min shorter (Pr <i>β</i>>0 = .960) during the heat acclimation period. No differences were observed between conditions in sleep duration, subjective sleep quality, or moderate or vigorous physical activity. These findings may suggest that athletes and coaches need to be cognisant that heat acclimation training may alter sleep quality and increase sedentary behaviour.<b>Highlights</b>Five consecutive days of heat training negatively affected some objective measures of sleep quality and incidental physical activity in recreationally trained athletes.Athletes and coaches need to be aware of the potential unintended consequences of using heat acclimation on sleep behaviours.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17461391.2022.2124386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
This randomized cross-over study tested the hypothesis that heat acclimation training would detrimentally affect sleep variables and alter incidental physical activity compared to a thermoneutral training control condition. Eight recreationally trained males (V̇O2peak 49±4.9 mL.kg-1.min-1) completed two separate interventions separated by at least 31 days: 5 consecutive day training blocks of moderate-intensity cycling (60 min·day-1 at 50% peak power output) in a hot (34.9±0.7 °C and 53±4 % relative humidity) and a temperate (22.2±2.6 °C; 65±8 % relative humidity) environment. Wrist-mounted accelerometers were worn continuously for the length of the training blocks and recorded physical activity, sleep quality and quantity. Data were analysed in a Bayesian framework, with the results presented as the posterior probability that a coefficient was greater or less than zero. Compared to the temperate training environment, heat acclimation impaired sleep efficiency (Pr β<0 = .979) and wake on sleep onset (Pr β>0 = .917). Daily sedentary time was, on average, 35 min longer (Pr β>0 = .973) and light physical activity time 18 min shorter (Pr β>0 = .960) during the heat acclimation period. No differences were observed between conditions in sleep duration, subjective sleep quality, or moderate or vigorous physical activity. These findings may suggest that athletes and coaches need to be cognisant that heat acclimation training may alter sleep quality and increase sedentary behaviour.HighlightsFive consecutive days of heat training negatively affected some objective measures of sleep quality and incidental physical activity in recreationally trained athletes.Athletes and coaches need to be aware of the potential unintended consequences of using heat acclimation on sleep behaviours.