Establishing COVID-19 trials at scale and pace: Experience from the RECOVERY trial

Q1 Biochemistry, Genetics and Molecular Biology Advances in biological regulation Pub Date : 2022-12-01 DOI:10.1016/j.jbior.2022.100901
Leon Peto , Peter Horby , Martin Landray
{"title":"Establishing COVID-19 trials at scale and pace: Experience from the RECOVERY trial","authors":"Leon Peto ,&nbsp;Peter Horby ,&nbsp;Martin Landray","doi":"10.1016/j.jbior.2022.100901","DOIUrl":null,"url":null,"abstract":"<div><p>The Randomised Evaluation of COVID-19 Therapy (RECOVERY) Trial was set up in March 2020 to evaluate treatments for people hospitalised with COVID-19. To maximise recruitment it was designed to fit into routine clinical care throughout the UK, and as a result it has enrolled more patients than any other COVID-19 treatment trial. RECOVERY has shown four drugs to be life-saving – dexamethasone, tocilizumab, baricitinib and casirivimab-imdevimab – and a further six have been shown to be of little or no benefit. In each case, results from RECOVERY were clear enough to rapidly influence global practice. Some of the reasons for this success relate to its particular setting in the UK during the SARS-CoV-2 pandemic, but many are generalisable to other contexts. In particular, its focus on recruiting large numbers of patients to identify or rule out moderate but worthwhile benefits of treatment, and the design decisions that followed from this. Similar large streamlined trials could produce similarly clear answers about the treatment of many other common diseases.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":"86 ","pages":"Article 100901"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9293394/pdf/","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biological regulation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212492622000410","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 9

Abstract

The Randomised Evaluation of COVID-19 Therapy (RECOVERY) Trial was set up in March 2020 to evaluate treatments for people hospitalised with COVID-19. To maximise recruitment it was designed to fit into routine clinical care throughout the UK, and as a result it has enrolled more patients than any other COVID-19 treatment trial. RECOVERY has shown four drugs to be life-saving – dexamethasone, tocilizumab, baricitinib and casirivimab-imdevimab – and a further six have been shown to be of little or no benefit. In each case, results from RECOVERY were clear enough to rapidly influence global practice. Some of the reasons for this success relate to its particular setting in the UK during the SARS-CoV-2 pandemic, but many are generalisable to other contexts. In particular, its focus on recruiting large numbers of patients to identify or rule out moderate but worthwhile benefits of treatment, and the design decisions that followed from this. Similar large streamlined trials could produce similarly clear answers about the treatment of many other common diseases.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以规模和速度建立COVID-19试验:来自康复试验的经验
2019冠状病毒病治疗(康复)随机评估试验于2020年3月启动,旨在评估COVID-19住院患者的治疗方法。为了最大限度地招募患者,该试验旨在适应整个英国的常规临床护理,因此,它招募的患者比任何其他COVID-19治疗试验都多。康复研究表明,有四种药物可以挽救生命——地塞米松、托珠单抗、巴西替尼和卡西维单抗-伊德维单抗——另外六种药物被证明几乎没有益处。在每一个案例中,《复苏》的结果都足够清晰,足以迅速影响全球实践。这一成功的一些原因与它在SARS-CoV-2大流行期间在英国的特殊环境有关,但许多原因可以推广到其他情况。特别是,它的重点是招募大量患者,以确定或排除适度但有价值的治疗益处,以及由此产生的设计决策。类似的大型简化试验也可以为许多其他常见疾病的治疗提供类似的明确答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in biological regulation
Advances in biological regulation Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
0.00%
发文量
41
审稿时长
17 days
期刊最新文献
Lamins and chromatin join forces. Fructose 1,6-bisphosphatase as a promising target of anticancer treatment. Sphingosine phosphate lyase insufficiency syndrome as a primary immunodeficiency state Expanding functions of the phosphatidylinositol/phosphatidate lipid transporter, PITPNC1 in physiology and in pathology. Hyperactivation of NF-κB signaling in splicing factor mutant myelodysplastic syndromes and therapeutic approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1