An evaluation of transfer learning models in EEG-based authentication.

Q1 Computer Science Brain Informatics Pub Date : 2023-08-03 DOI:10.1186/s40708-023-00198-4
Hui Yen Yap, Yun-Huoy Choo, Zeratul Izzah Mohd Yusoh, Wee How Khoh
{"title":"An evaluation of transfer learning models in EEG-based authentication.","authors":"Hui Yen Yap, Yun-Huoy Choo, Zeratul Izzah Mohd Yusoh, Wee How Khoh","doi":"10.1186/s40708-023-00198-4","DOIUrl":null,"url":null,"abstract":"<p><p>Electroencephalogram(EEG)-based authentication has received increasing attention from researchers as they believe it could serve as an alternative to more conventional personal authentication methods. Unfortunately, EEG signals are non-stationary and could be easily contaminated by noise and artifacts. Therefore, further processing of data analysis is needed to retrieve useful information. Various machine learning approaches have been proposed and implemented in the EEG-based domain, with deep learning being the most current trend. However, retaining the performance of a deep learning model requires substantial computational effort and a vast amount of data, especially when the models go deeper to generate consistent results. Deep learning models trained with small data sets from scratch may experience an overfitting issue. Transfer learning becomes an alternative solution. It is a technique to recognize and apply the knowledge and skills learned from the previous tasks to a new domain with limited training data. This study attempts to explore the applicability of transferring various pre-trained models' knowledge to the EEG-based authentication domain. A self-collected database that consists of 30 subjects was utilized in the analysis. The database enrolment is divided into two sessions, with each session producing two sets of EEG recording data. The frequency spectrums of the preprocessed EEG signals are extracted and fed into the pre-trained models as the input data. Three experimental tests are carried out and the best performance is reported with accuracy in the range of 99.1-99.9%. The acquired results demonstrate the efficiency of transfer learning in authenticating an individual in this domain.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"19"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10400490/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-023-00198-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Electroencephalogram(EEG)-based authentication has received increasing attention from researchers as they believe it could serve as an alternative to more conventional personal authentication methods. Unfortunately, EEG signals are non-stationary and could be easily contaminated by noise and artifacts. Therefore, further processing of data analysis is needed to retrieve useful information. Various machine learning approaches have been proposed and implemented in the EEG-based domain, with deep learning being the most current trend. However, retaining the performance of a deep learning model requires substantial computational effort and a vast amount of data, especially when the models go deeper to generate consistent results. Deep learning models trained with small data sets from scratch may experience an overfitting issue. Transfer learning becomes an alternative solution. It is a technique to recognize and apply the knowledge and skills learned from the previous tasks to a new domain with limited training data. This study attempts to explore the applicability of transferring various pre-trained models' knowledge to the EEG-based authentication domain. A self-collected database that consists of 30 subjects was utilized in the analysis. The database enrolment is divided into two sessions, with each session producing two sets of EEG recording data. The frequency spectrums of the preprocessed EEG signals are extracted and fed into the pre-trained models as the input data. Three experimental tests are carried out and the best performance is reported with accuracy in the range of 99.1-99.9%. The acquired results demonstrate the efficiency of transfer learning in authenticating an individual in this domain.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于脑电图的认证中迁移学习模型的评估。
基于脑电图(EEG)的身份验证越来越受到研究人员的关注,因为他们认为它可以作为更传统的个人身份验证方法的替代方案。不幸的是,脑电图信号是非平稳的,很容易受到噪声和伪影的污染。因此,需要对数据分析进行进一步的处理,以检索有用的信息。在基于脑电图的领域中,已经提出并实现了各种机器学习方法,其中深度学习是最新的趋势。然而,保持深度学习模型的性能需要大量的计算工作和大量的数据,特别是当模型更深入地产生一致的结果时。从零开始用小数据集训练的深度学习模型可能会遇到过拟合问题。迁移学习成为另一种解决方案。它是一种在有限的训练数据下识别和应用从以前的任务中学到的知识和技能到新领域的技术。本研究试图探索将各种预训练模型的知识转移到基于脑电图的认证领域的适用性。在分析中使用了一个由30名受试者组成的自行收集的数据库。数据库注册分为两个阶段,每个阶段产生两组脑电图记录数据。提取预处理后的脑电信号的频谱,作为输入数据输入到预训练模型中。进行了三次实验测试,结果表明该方法的精度在99.1 ~ 99.9%之间。所得结果证明了迁移学习在该领域对个体进行身份验证的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain Informatics
Brain Informatics Computer Science-Computer Science Applications
CiteScore
9.50
自引率
0.00%
发文量
27
审稿时长
13 weeks
期刊介绍: Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing
期刊最新文献
Novel machine learning-driven comparative analysis of CSP, STFT, and CSP-STFT fusion for EEG data classification across multiple meditation and non-meditation sessions in BCI pipeline. Rethinking the residual approach: leveraging statistical learning to operationalize cognitive resilience in Alzheimer's disease. CalciumZero: a toolbox for fluorescence calcium imaging on iPSC derived brain organoids. Blockchain-enabled digital twin system for brain stroke prediction. A temporal-spectral graph convolutional neural network model for EEG emotion recognition within and across subjects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1