Arya Sajayan, Amrudha Ravindran, Joseph Selvin, Prathiviraj Ragothaman, George Seghal Kiran
{"title":"An antimicrobial metabolite n- hexadecenoic acid from marine sponge-associated bacteria <i>Bacillus subtilis</i> effectively inhibited biofilm forming multidrug-resistant <i>P. aeruginosa</i>.","authors":"Arya Sajayan, Amrudha Ravindran, Joseph Selvin, Prathiviraj Ragothaman, George Seghal Kiran","doi":"10.1080/08927014.2023.2232722","DOIUrl":null,"url":null,"abstract":"<p><p>Effective drug candidates to obstruct the emergence of multidrug-resistant pathogens have become a major concern. A potent antimicrobial producer was isolated from a marine sponge designated as MSI38 and was identified as <i>Bacillus subtilis</i> by 16SrDNA sequencing. The active antimicrobial fraction was purified, and the metabolite was identified as n-hexadecanoic acid by spectroscopic analysis. The fish-borne pathogen <i>Pseudomonas aeruginosa</i> FP012 was found to be multidrug-resistant and poses a risk of disease to food handlers and consumers in general. The compound showed a potent bactericidal effect against <i>P. aeruginosa</i> FP012 with a MIC of 31.33 ± 5.67 mg L<sup>-1</sup> and MBC of 36.66 ± 5.17 mg L<sup>-1</sup>. The time-based biofilm inhibitory potential of MSI38 and ciprofloxacin was analyzed by confocal laser scanning microscopy. A synergistic effect of MSI38 and ciprofloxacin on biofilm showed 85% inhibition.</p>","PeriodicalId":8898,"journal":{"name":"Biofouling","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofouling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08927014.2023.2232722","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Effective drug candidates to obstruct the emergence of multidrug-resistant pathogens have become a major concern. A potent antimicrobial producer was isolated from a marine sponge designated as MSI38 and was identified as Bacillus subtilis by 16SrDNA sequencing. The active antimicrobial fraction was purified, and the metabolite was identified as n-hexadecanoic acid by spectroscopic analysis. The fish-borne pathogen Pseudomonas aeruginosa FP012 was found to be multidrug-resistant and poses a risk of disease to food handlers and consumers in general. The compound showed a potent bactericidal effect against P. aeruginosa FP012 with a MIC of 31.33 ± 5.67 mg L-1 and MBC of 36.66 ± 5.17 mg L-1. The time-based biofilm inhibitory potential of MSI38 and ciprofloxacin was analyzed by confocal laser scanning microscopy. A synergistic effect of MSI38 and ciprofloxacin on biofilm showed 85% inhibition.
期刊介绍:
Biofouling is an international, peer-reviewed, multi-discliplinary journal which publishes original articles and mini-reviews and provides a forum for publication of pure and applied work on protein, microbial, fungal, plant and animal fouling and its control, as well as studies of all kinds on biofilms and bioadhesion.
Papers may be based on studies relating to characterisation, attachment, growth and control on any natural (living) or man-made surface in the freshwater, marine or aerial environments, including fouling, biofilms and bioadhesion in the medical, dental, and industrial context.
Specific areas of interest include antifouling technologies and coatings including transmission of invasive species, antimicrobial agents, biological interfaces, biomaterials, microbiologically influenced corrosion, membrane biofouling, food industry biofilms, biofilm based diseases and indwelling biomedical devices as substrata for fouling and biofilm growth, including papers based on clinically-relevant work using models that mimic the realistic environment in which they are intended to be used.