{"title":"The Process of Adsorption and Cartridge Design.","authors":"Claudio Ronco, Rinaldo Bellomo","doi":"10.1159/000529295","DOIUrl":null,"url":null,"abstract":"<p><p>The mechanism of adsorption is regulated by various factors including the nature of the sorbent and the molecules involved in the adsorption process. The design of a device for adsorption therapies must fulfil specific requirements. The device should allow the use of the minimum amount of sorbent material sufficient to achieve safe and effective blood purification therapy. Each component of the device must respond to criteria of safety and function in order to maximize the efficiency of the cartridge. The design should be optimized to enable utilization of all the sorbent surface available for adsorption. The structure and packing of the sorbent particles should allow the even distribution of flow inside the cartridge and the avoidance of channeling phenomena and excessive resistance to flow. All these factors depend on specific governing laws such as the Kozeny-Carman equation and Darcy's law. The system must also consider blood viscosity and possible turbulent flows (Reynolds number). The final manufacturing process of a sorbent unit must also consider the dimensions and the cost, and the final performance after sterilization and storage.</p>","PeriodicalId":10725,"journal":{"name":"Contributions to nephrology","volume":"200 ","pages":"74-81"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000529295","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/1 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
The mechanism of adsorption is regulated by various factors including the nature of the sorbent and the molecules involved in the adsorption process. The design of a device for adsorption therapies must fulfil specific requirements. The device should allow the use of the minimum amount of sorbent material sufficient to achieve safe and effective blood purification therapy. Each component of the device must respond to criteria of safety and function in order to maximize the efficiency of the cartridge. The design should be optimized to enable utilization of all the sorbent surface available for adsorption. The structure and packing of the sorbent particles should allow the even distribution of flow inside the cartridge and the avoidance of channeling phenomena and excessive resistance to flow. All these factors depend on specific governing laws such as the Kozeny-Carman equation and Darcy's law. The system must also consider blood viscosity and possible turbulent flows (Reynolds number). The final manufacturing process of a sorbent unit must also consider the dimensions and the cost, and the final performance after sterilization and storage.
期刊介绍:
The speed of developments in nephrology has been fueled by the promise that new findings may improve the care of patients suffering from renal disease. Participating in these rapid advances, this series has released an exceptional number of volumes that explore problems of immediate importance for clinical nephrology. Focus ranges from discussion of innovative treatment strategies to critical evaluations of investigative methodology. The value of regularly consolidating the newest findings and theories is enhanced through the inclusion of extensive bibliographies which make each volume a reference work deserving careful study.