{"title":"Get into the groove! The influence of TAPBPR on cargo selection","authors":"Reem Satti , Jack L Morley , Louise H Boyle","doi":"10.1016/j.coi.2023.102346","DOIUrl":null,"url":null,"abstract":"<div><p><span>Since the discovery of Transporter associated with antigen processing-binding protein-related (TAPBPR) over two decades ago, extensive studies have explored its function in the context of the major histocompatibility complex class-I (MHC-I) </span>antigen processing<span> and presentation pathway. As a chaperone and peptide editor, TAPBPR was recently revealed to have overlapping structural features when resolved with peptide-receptive MHC-I molecules compared with the two newly solved tapasin:MHC-I structures. Despite this, the two chaperones seem to have a unique criteria for loading high-affinity peptides on MHC-I molecules. Yet, the mechanism of action of how TAPBPR creates its distinct filter in cargo selection for peptide-receptive MHC-I molecules continues to be a subject of debate.</span></p></div>","PeriodicalId":11361,"journal":{"name":"Current Opinion in Immunology","volume":"83 ","pages":"Article 102346"},"PeriodicalIF":6.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952791523000651","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Since the discovery of Transporter associated with antigen processing-binding protein-related (TAPBPR) over two decades ago, extensive studies have explored its function in the context of the major histocompatibility complex class-I (MHC-I) antigen processing and presentation pathway. As a chaperone and peptide editor, TAPBPR was recently revealed to have overlapping structural features when resolved with peptide-receptive MHC-I molecules compared with the two newly solved tapasin:MHC-I structures. Despite this, the two chaperones seem to have a unique criteria for loading high-affinity peptides on MHC-I molecules. Yet, the mechanism of action of how TAPBPR creates its distinct filter in cargo selection for peptide-receptive MHC-I molecules continues to be a subject of debate.
期刊介绍:
Current Opinion in Immunology aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In Current Opinion in Immunology we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
Current Opinion in Immunology will serve as an invaluable source of information for researchers, lecturers, teachers, professionals, policy makers and students.
Current Opinion in Immunology builds on Elsevier''s reputation for excellence in scientific publishing and long-standing commitment to communicating reproducible biomedical research targeted at improving human health. It is a companion to the new Gold Open Access journal Current Research in Immunology and is part of the Current Opinion and Research(CO+RE) suite of journals. All CO+RE journals leverage the Current Opinion legacy-of editorial excellence, high-impact, and global reach-to ensure they are a widely read resource that is integral to scientists'' workflow.