{"title":"Distraction descriptor for brainprint authentication modelling using probability-based Incremental Fuzzy-Rough Nearest Neighbour.","authors":"Siaw-Hong Liew, Yun-Huoy Choo, Yin Fen Low, Fadilla 'Atyka Nor Rashid","doi":"10.1186/s40708-023-00200-z","DOIUrl":null,"url":null,"abstract":"<p><p>This paper aims to design distraction descriptor, elicited through the object variation, to refine the granular knowledge incrementally, using the proposed probability-based incremental update strategy in Incremental Fuzzy-Rough Nearest Neighbour (IncFRNN) technique. Most of the brainprint authentication models were tested in well-controlled environments to minimize the influence of ambient disturbance on the EEG signals. These settings significantly contradict the real-world situations. Thus, making use of the distraction is wiser than eliminating it. The proposed probability-based incremental update strategy is benchmarked with the ground truth (actual class) incremental update strategy. Besides, the proposed technique is also benchmarked with First-In-First-Out (FIFO) incremental update strategy in K-Nearest Neighbour (KNN). The experimental results have shown equivalence discriminatory performance in both high distraction and quiet conditions. This has proven that the proposed distraction descriptor is able to utilize the unique EEG response towards ambient distraction to complement person authentication modelling in uncontrolled environment. The proposed probability-based IncFRNN technique has significantly outperformed the KNN technique for both with and without defining the window size threshold. Nevertheless, its performance is slightly worse than the actual class incremental update strategy since the ground truth represents the gold standard. In overall, this study demonstrated a more practical brainprint authentication model with the proposed distraction descriptor and the probability-based incremental update strategy. However, the EEG distraction descriptor may vary due to intersession variability. Future research may focus on the intersession variability to enhance the robustness of the brainprint authentication model.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"10 1","pages":"21"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10404212/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-023-00200-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1
Abstract
This paper aims to design distraction descriptor, elicited through the object variation, to refine the granular knowledge incrementally, using the proposed probability-based incremental update strategy in Incremental Fuzzy-Rough Nearest Neighbour (IncFRNN) technique. Most of the brainprint authentication models were tested in well-controlled environments to minimize the influence of ambient disturbance on the EEG signals. These settings significantly contradict the real-world situations. Thus, making use of the distraction is wiser than eliminating it. The proposed probability-based incremental update strategy is benchmarked with the ground truth (actual class) incremental update strategy. Besides, the proposed technique is also benchmarked with First-In-First-Out (FIFO) incremental update strategy in K-Nearest Neighbour (KNN). The experimental results have shown equivalence discriminatory performance in both high distraction and quiet conditions. This has proven that the proposed distraction descriptor is able to utilize the unique EEG response towards ambient distraction to complement person authentication modelling in uncontrolled environment. The proposed probability-based IncFRNN technique has significantly outperformed the KNN technique for both with and without defining the window size threshold. Nevertheless, its performance is slightly worse than the actual class incremental update strategy since the ground truth represents the gold standard. In overall, this study demonstrated a more practical brainprint authentication model with the proposed distraction descriptor and the probability-based incremental update strategy. However, the EEG distraction descriptor may vary due to intersession variability. Future research may focus on the intersession variability to enhance the robustness of the brainprint authentication model.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing