Anna L Wisniewski, Jonathan A Nations, Graham J Slater
{"title":"Bayesian Prediction of Multivariate Ecology from Phenotypic Data Yields New Insights into the Diets of Extant and Extinct Taxa.","authors":"Anna L Wisniewski, Jonathan A Nations, Graham J Slater","doi":"10.1086/725055","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractMorphology often reflects ecology, enabling the prediction of ecological roles for taxa that lack direct observations, such as fossils. In comparative analyses, ecological traits, like diet, are often treated as categorical, which may aid prediction and simplify analyses but ignores the multivariate nature of ecological niches. Furthermore, methods for quantifying and predicting multivariate ecology remain rare. Here, we ranked the relative importance of 13 food items for a sample of 88 extant carnivoran mammals and then used Bayesian multilevel modeling to assess whether those rankings could be predicted from dental morphology and body size. Traditional diet categories fail to capture the true multivariate nature of carnivoran diets, but Bayesian regression models derived from living taxa have good predictive accuracy for importance ranks. Using our models to predict the importance of individual food items, the multivariate dietary niche, and the nearest extant analogs for a set of data-deficient extant and extinct carnivoran species confirms long-standing ideas for some taxa but yields new insights into the fundamental dietary niches of others. Our approach provides a promising alternative to traditional dietary classifications. Importantly, this approach need not be limited to diet but serves as a general framework for predicting multivariate ecology from phenotypic traits.</p>","PeriodicalId":50800,"journal":{"name":"American Naturalist","volume":"202 2","pages":"192-215"},"PeriodicalIF":2.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Naturalist","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1086/725055","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
AbstractMorphology often reflects ecology, enabling the prediction of ecological roles for taxa that lack direct observations, such as fossils. In comparative analyses, ecological traits, like diet, are often treated as categorical, which may aid prediction and simplify analyses but ignores the multivariate nature of ecological niches. Furthermore, methods for quantifying and predicting multivariate ecology remain rare. Here, we ranked the relative importance of 13 food items for a sample of 88 extant carnivoran mammals and then used Bayesian multilevel modeling to assess whether those rankings could be predicted from dental morphology and body size. Traditional diet categories fail to capture the true multivariate nature of carnivoran diets, but Bayesian regression models derived from living taxa have good predictive accuracy for importance ranks. Using our models to predict the importance of individual food items, the multivariate dietary niche, and the nearest extant analogs for a set of data-deficient extant and extinct carnivoran species confirms long-standing ideas for some taxa but yields new insights into the fundamental dietary niches of others. Our approach provides a promising alternative to traditional dietary classifications. Importantly, this approach need not be limited to diet but serves as a general framework for predicting multivariate ecology from phenotypic traits.
期刊介绍:
Since its inception in 1867, The American Naturalist has maintained its position as one of the world''s premier peer-reviewed publications in ecology, evolution, and behavior research. Its goals are to publish articles that are of broad interest to the readership, pose new and significant problems, introduce novel subjects, develop conceptual unification, and change the way people think. AmNat emphasizes sophisticated methodologies and innovative theoretical syntheses—all in an effort to advance the knowledge of organic evolution and other broad biological principles.