{"title":"A guide to membraneless organelles and their various roles in gene regulation","authors":"Tetsuro Hirose, Kensuke Ninomiya, Shinichi Nakagawa, Tomohiro Yamazaki","doi":"10.1038/s41580-022-00558-8","DOIUrl":null,"url":null,"abstract":"Membraneless organelles (MLOs) are detected in cells as dots of mesoscopic size. By undergoing phase separation into a liquid-like or gel-like phase, MLOs contribute to intracellular compartmentalization of specific biological functions. In eukaryotes, dozens of MLOs have been identified, including the nucleolus, Cajal bodies, nuclear speckles, paraspeckles, promyelocytic leukaemia protein (PML) nuclear bodies, nuclear stress bodies, processing bodies (P bodies) and stress granules. MLOs contain specific proteins, of which many possess intrinsically disordered regions (IDRs), and nucleic acids, mainly RNA. Many MLOs contribute to gene regulation by different mechanisms. Through sequestration of specific factors, MLOs promote biochemical reactions by simultaneously concentrating substrates and enzymes, and/or suppressing the activity of the sequestered factors elsewhere in the cell. Other MLOs construct inter-chromosomal hubs by associating with multiple loci, thereby contributing to the biogenesis of macromolecular machineries essential for gene expression, such as ribosomes and spliceosomes. The organization of many MLOs includes layers, which might have different biophysical properties and functions. MLOs are functionally interconnected and are involved in various diseases, prompting the emergence of therapeutics targeting them. In this Review, we introduce MLOs that are relevant to gene regulation and discuss their assembly, internal structure, gene-regulatory roles in transcription, RNA processing and translation, particularly in stress conditions, and their disease relevance. Membraneless organelles (MLOs) contribute to intracellular compartmentalization and to various cellular processes. This Review provides a guide to MLOs involved in gene regulation in eukaryotes, discussing their assembly, structure, roles in transcription, RNA processing and translation — particularly in stress conditions — and their disease relevance.","PeriodicalId":19051,"journal":{"name":"Nature Reviews Molecular Cell Biology","volume":"24 4","pages":"288-304"},"PeriodicalIF":81.3000,"publicationDate":"2022-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41580-022-00558-8","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 44
Abstract
Membraneless organelles (MLOs) are detected in cells as dots of mesoscopic size. By undergoing phase separation into a liquid-like or gel-like phase, MLOs contribute to intracellular compartmentalization of specific biological functions. In eukaryotes, dozens of MLOs have been identified, including the nucleolus, Cajal bodies, nuclear speckles, paraspeckles, promyelocytic leukaemia protein (PML) nuclear bodies, nuclear stress bodies, processing bodies (P bodies) and stress granules. MLOs contain specific proteins, of which many possess intrinsically disordered regions (IDRs), and nucleic acids, mainly RNA. Many MLOs contribute to gene regulation by different mechanisms. Through sequestration of specific factors, MLOs promote biochemical reactions by simultaneously concentrating substrates and enzymes, and/or suppressing the activity of the sequestered factors elsewhere in the cell. Other MLOs construct inter-chromosomal hubs by associating with multiple loci, thereby contributing to the biogenesis of macromolecular machineries essential for gene expression, such as ribosomes and spliceosomes. The organization of many MLOs includes layers, which might have different biophysical properties and functions. MLOs are functionally interconnected and are involved in various diseases, prompting the emergence of therapeutics targeting them. In this Review, we introduce MLOs that are relevant to gene regulation and discuss their assembly, internal structure, gene-regulatory roles in transcription, RNA processing and translation, particularly in stress conditions, and their disease relevance. Membraneless organelles (MLOs) contribute to intracellular compartmentalization and to various cellular processes. This Review provides a guide to MLOs involved in gene regulation in eukaryotes, discussing their assembly, structure, roles in transcription, RNA processing and translation — particularly in stress conditions — and their disease relevance.
期刊介绍:
Nature Reviews Molecular Cell Biology is a prestigious journal that aims to be the primary source of reviews and commentaries for the scientific communities it serves. The journal strives to publish articles that are authoritative, accessible, and enriched with easily understandable figures, tables, and other display items. The goal is to provide an unparalleled service to authors, referees, and readers, and the journal works diligently to maximize the usefulness and impact of each article. Nature Reviews Molecular Cell Biology publishes a variety of article types, including Reviews, Perspectives, Comments, and Research Highlights, all of which are relevant to molecular and cell biologists. The journal's broad scope ensures that the articles it publishes reach the widest possible audience.