Yahui Liu, Ning Yan, Qin Chen, Lezhen Dong, Ying Li, Peifang Weng, Zufang Wu, Daodong Pan, Lingyi Liu, Mohamed A Farag, Lei Wang, Lianliang Liu
{"title":"Research advances in citrus polyphenols: green extraction technologies, gut homeostasis regulation, and nano-targeted delivery system application.","authors":"Yahui Liu, Ning Yan, Qin Chen, Lezhen Dong, Ying Li, Peifang Weng, Zufang Wu, Daodong Pan, Lingyi Liu, Mohamed A Farag, Lei Wang, Lianliang Liu","doi":"10.1080/10408398.2023.2239350","DOIUrl":null,"url":null,"abstract":"<p><p>Citrus polyphenols can modulate gut microbiota and such bi-directional interaction that can yield metabolites such as short-chain fatty acids (SCFAs) to aid in gut homeostasis. Such interaction provides citrus polyphenols with powerful prebiotic potential, contributing to guts' health status and metabolic regulation. Citrus polyphenols encompass unique polymethoxy flavonoids imparting non-polar nature that improve their bioactivities and ability to penetrate the blood-brain barrier. Green extraction technology targeting recovery of these polyphenols has received increasing attention due to its advantages of high extraction yield, short extraction time, low solvent consumption, and environmental friendliness. However, the low bioavailability of citrus polyphenols limits their applications in extraction from citrus by-products. Meanwhile, nano-encapsulation technology may serve as a promising approach to improve citrus polyphenols' bioavailability. As citrus polyphenols encompass multiple hydroxyl groups, they are potential to interact with bio-macromolecules such as proteins and polysaccharides in nano-encapsulated systems that can improve their bioavailability. This multifaceted review provides a research basis for the green and efficient extraction techniques of citrus polyphenols, as well as integrated mechanisms for its anti-inflammation, alleviating metabolic syndrome, and regulating gut homeostasis, which is more capitalized upon using nano-delivery systems as discussed in that review to maximize their health and food applications.</p>","PeriodicalId":10767,"journal":{"name":"Critical reviews in food science and nutrition","volume":" ","pages":"11493-11509"},"PeriodicalIF":7.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in food science and nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/10408398.2023.2239350","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Citrus polyphenols can modulate gut microbiota and such bi-directional interaction that can yield metabolites such as short-chain fatty acids (SCFAs) to aid in gut homeostasis. Such interaction provides citrus polyphenols with powerful prebiotic potential, contributing to guts' health status and metabolic regulation. Citrus polyphenols encompass unique polymethoxy flavonoids imparting non-polar nature that improve their bioactivities and ability to penetrate the blood-brain barrier. Green extraction technology targeting recovery of these polyphenols has received increasing attention due to its advantages of high extraction yield, short extraction time, low solvent consumption, and environmental friendliness. However, the low bioavailability of citrus polyphenols limits their applications in extraction from citrus by-products. Meanwhile, nano-encapsulation technology may serve as a promising approach to improve citrus polyphenols' bioavailability. As citrus polyphenols encompass multiple hydroxyl groups, they are potential to interact with bio-macromolecules such as proteins and polysaccharides in nano-encapsulated systems that can improve their bioavailability. This multifaceted review provides a research basis for the green and efficient extraction techniques of citrus polyphenols, as well as integrated mechanisms for its anti-inflammation, alleviating metabolic syndrome, and regulating gut homeostasis, which is more capitalized upon using nano-delivery systems as discussed in that review to maximize their health and food applications.
期刊介绍:
Critical Reviews in Food Science and Nutrition serves as an authoritative outlet for critical perspectives on contemporary technology, food science, and human nutrition.
With a specific focus on issues of national significance, particularly for food scientists, nutritionists, and health professionals, the journal delves into nutrition, functional foods, food safety, and food science and technology. Research areas span diverse topics such as diet and disease, antioxidants, allergenicity, microbiological concerns, flavor chemistry, nutrient roles and bioavailability, pesticides, toxic chemicals and regulation, risk assessment, food safety, and emerging food products, ingredients, and technologies.