Tajanka Mladenovska, Peter F Choong, Gordon G Wallace, Cathal D O'Connell
{"title":"The regulatory challenge of 3D bioprinting.","authors":"Tajanka Mladenovska, Peter F Choong, Gordon G Wallace, Cathal D O'Connell","doi":"10.2217/rme-2022-0194","DOIUrl":null,"url":null,"abstract":"<p><p>New developments in additive manufacturing and regenerative medicine have the potential to radically disrupt the traditional pipelines of therapy development and medical device manufacture. These technologies present a challenge for regulators because traditional regulatory frameworks are designed for mass manufactured therapies, rather than bespoke solutions. 3D bioprinting technologies present another dimension of complexity through the inclusion of living cells in the fabrication process. Herein we overview the challenge of regulating 3D bioprinting in comparison to existing cell therapy products as well as custom-made 3D printed medical devices. We consider a range of specific challenges pertaining to 3D bioprinting in regenerative medicine, including classification, risk, standardization and quality control, as well as technical issues related to the manufacturing process and the incorporated materials and cells.</p>","PeriodicalId":21043,"journal":{"name":"Regenerative medicine","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2217/rme-2022-0194","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 2
Abstract
New developments in additive manufacturing and regenerative medicine have the potential to radically disrupt the traditional pipelines of therapy development and medical device manufacture. These technologies present a challenge for regulators because traditional regulatory frameworks are designed for mass manufactured therapies, rather than bespoke solutions. 3D bioprinting technologies present another dimension of complexity through the inclusion of living cells in the fabrication process. Herein we overview the challenge of regulating 3D bioprinting in comparison to existing cell therapy products as well as custom-made 3D printed medical devices. We consider a range of specific challenges pertaining to 3D bioprinting in regenerative medicine, including classification, risk, standardization and quality control, as well as technical issues related to the manufacturing process and the incorporated materials and cells.
期刊介绍:
Regenerative medicine replaces or regenerates human cells, tissue or organs, to restore or establish normal function*. Since 2006, Regenerative Medicine has been at the forefront of publishing the very best papers and reviews covering the entire regenerative medicine sector. The journal focusses on the entire spectrum of approaches to regenerative medicine, including small molecule drugs, biologics, biomaterials and tissue engineering, and cell and gene therapies – it’s all about regeneration and not a specific platform technology. The journal’s scope encompasses all aspects of the sector ranging from discovery research, through to clinical development, through to commercialization. Regenerative Medicine uniquely supports this important area of biomedical science and healthcare by providing a peer-reviewed journal totally committed to publishing the very best regenerative medicine research, clinical translation and commercialization.
Regenerative Medicine provides a specialist forum to address the important challenges and advances in regenerative medicine, delivering this essential information in concise, clear and attractive article formats – vital to a rapidly growing, multidisciplinary and increasingly time-constrained community.
Despite substantial developments in our knowledge and understanding of regeneration, the field is still in its infancy. However, progress is accelerating. The next few decades will see the discovery and development of transformative therapies for patients, and in some cases, even cures. Regenerative Medicine will continue to provide a critical overview of these advances as they progress, undergo clinical trials, and eventually become mainstream medicine.