{"title":"Riskiness of Movement Lifestyle Varies Inversely with Adult Survival Probability among Species.","authors":"Timothy R Forrester, Thomas E Martin","doi":"10.1086/725056","DOIUrl":null,"url":null,"abstract":"<p><p>AbstractWhy do species differ in their movement lifestyles? Animals that spend more time sitting motionless and acquire food using less conspicuous movements can be more vigilant and less obvious to predators. More active animals that use food types and sites that require more conspicuous behaviors increase vulnerability to predators. Life history theory predicts that aversiveness to mortality risk evolves inversely to adult survival probability. Consequently, we postulated that long-lived species evolved inconspicuous movement lifestyles, whereas shorter-lived species use more conspicuous movement lifestyles. We tested this hypothesis by quantifying the movement lifestyles of nine tropical songbird species. Use of conspicuous movement and foraging behaviors, such as flying and hovering, was greatest in shorter-lived species and decreased with increasing adult survival probability across species. Similarly, foraging speed decreased with increasing adult survival based on a meta-analysis of 64 songbird species. Faster and conspicuous movement lifestyles of shorter-lived species likely increase food acquisition rates, which fits with faster life history strategies that include more feeding trips for young and faster growth. Similarly, slow movement lifestyles of long-lived species fit with the reduced food needs of slower life history strategies. Movement lifestyles may have evolved as an integrated component of the slow-fast life history continuum.</p>","PeriodicalId":50800,"journal":{"name":"American Naturalist","volume":"202 2","pages":"166-180"},"PeriodicalIF":2.4000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Naturalist","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1086/725056","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractWhy do species differ in their movement lifestyles? Animals that spend more time sitting motionless and acquire food using less conspicuous movements can be more vigilant and less obvious to predators. More active animals that use food types and sites that require more conspicuous behaviors increase vulnerability to predators. Life history theory predicts that aversiveness to mortality risk evolves inversely to adult survival probability. Consequently, we postulated that long-lived species evolved inconspicuous movement lifestyles, whereas shorter-lived species use more conspicuous movement lifestyles. We tested this hypothesis by quantifying the movement lifestyles of nine tropical songbird species. Use of conspicuous movement and foraging behaviors, such as flying and hovering, was greatest in shorter-lived species and decreased with increasing adult survival probability across species. Similarly, foraging speed decreased with increasing adult survival based on a meta-analysis of 64 songbird species. Faster and conspicuous movement lifestyles of shorter-lived species likely increase food acquisition rates, which fits with faster life history strategies that include more feeding trips for young and faster growth. Similarly, slow movement lifestyles of long-lived species fit with the reduced food needs of slower life history strategies. Movement lifestyles may have evolved as an integrated component of the slow-fast life history continuum.
期刊介绍:
Since its inception in 1867, The American Naturalist has maintained its position as one of the world''s premier peer-reviewed publications in ecology, evolution, and behavior research. Its goals are to publish articles that are of broad interest to the readership, pose new and significant problems, introduce novel subjects, develop conceptual unification, and change the way people think. AmNat emphasizes sophisticated methodologies and innovative theoretical syntheses—all in an effort to advance the knowledge of organic evolution and other broad biological principles.