{"title":"Predicting gastric cancer tumor mutational burden from histopathological images using multimodal deep learning.","authors":"Jing Li, Haiyan Liu, Wei Liu, Peijun Zong, Kaimei Huang, Zibo Li, Haigang Li, Ting Xiong, Geng Tian, Chun Li, Jialiang Yang","doi":"10.1093/bfgp/elad032","DOIUrl":null,"url":null,"abstract":"<p><p>Tumor mutational burden (TMB) is a significant predictive biomarker for selecting patients that may benefit from immune checkpoint inhibitor therapy. Whole exome sequencing is a common method for measuring TMB; however, its clinical application is limited by the high cost and time-consuming wet-laboratory experiments and bioinformatics analysis. To address this challenge, we downloaded multimodal data of 326 gastric cancer patients from The Cancer Genome Atlas, including histopathological images, clinical data and various molecular data. Using these data, we conducted a comprehensive analysis to investigate the relationship between TMB, clinical factors, gene expression and image features extracted from hematoxylin and eosin images. We further explored the feasibility of predicting TMB levels, i.e. high and low TMB, by utilizing a residual network (Resnet)-based deep learning algorithm for histopathological image analysis. Moreover, we developed a multimodal fusion deep learning model that combines histopathological images with omics data to predict TMB levels. We evaluated the performance of our models against various state-of-the-art methods using different TMB thresholds and obtained promising results. Specifically, our histopathological image analysis model achieved an area under curve (AUC) of 0.749. Notably, the multimodal fusion model significantly outperformed the model that relied only on histopathological images, with the highest AUC of 0.971. Our findings suggest that histopathological images could be used with reasonable accuracy to predict TMB levels in gastric cancer patients, while multimodal deep learning could achieve even higher levels of accuracy. This study sheds new light on predicting TMB in gastric cancer patients.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"228-238"},"PeriodicalIF":2.5000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elad032","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tumor mutational burden (TMB) is a significant predictive biomarker for selecting patients that may benefit from immune checkpoint inhibitor therapy. Whole exome sequencing is a common method for measuring TMB; however, its clinical application is limited by the high cost and time-consuming wet-laboratory experiments and bioinformatics analysis. To address this challenge, we downloaded multimodal data of 326 gastric cancer patients from The Cancer Genome Atlas, including histopathological images, clinical data and various molecular data. Using these data, we conducted a comprehensive analysis to investigate the relationship between TMB, clinical factors, gene expression and image features extracted from hematoxylin and eosin images. We further explored the feasibility of predicting TMB levels, i.e. high and low TMB, by utilizing a residual network (Resnet)-based deep learning algorithm for histopathological image analysis. Moreover, we developed a multimodal fusion deep learning model that combines histopathological images with omics data to predict TMB levels. We evaluated the performance of our models against various state-of-the-art methods using different TMB thresholds and obtained promising results. Specifically, our histopathological image analysis model achieved an area under curve (AUC) of 0.749. Notably, the multimodal fusion model significantly outperformed the model that relied only on histopathological images, with the highest AUC of 0.971. Our findings suggest that histopathological images could be used with reasonable accuracy to predict TMB levels in gastric cancer patients, while multimodal deep learning could achieve even higher levels of accuracy. This study sheds new light on predicting TMB in gastric cancer patients.
期刊介绍:
Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data.
The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.