The Effect of Growth Factors on Vaginal Wound Healing: A Systematic Review and Meta-analysis.

IF 5.1 2区 医学 Q2 CELL & TISSUE ENGINEERING Tissue Engineering. Part B, Reviews Pub Date : 2023-08-01 Epub Date: 2023-06-06 DOI:10.1089/ten.TEB.2022.0225
Melissa J J van Velthoven, Aksel N Gudde, Frederique Struijs, Egbert Oosterwijk, Jan-Paul Roovers, Zeliha Guler, Carlijn R Hooijmans, Paul H J Kouwer
{"title":"The Effect of Growth Factors on Vaginal Wound Healing: A Systematic Review and Meta-analysis.","authors":"Melissa J J van Velthoven, Aksel N Gudde, Frederique Struijs, Egbert Oosterwijk, Jan-Paul Roovers, Zeliha Guler, Carlijn R Hooijmans, Paul H J Kouwer","doi":"10.1089/ten.TEB.2022.0225","DOIUrl":null,"url":null,"abstract":"<p><p>Surgical outcomes of pelvic organ prolapse (POP) surgery are poor, resulting in a 20% recurrence risk. Following the hypothesis that impaired wound healing is the main determinant of recurrent POP, growth factors have the potential to promote wound healing and may improve surgical outcomes. In this study, we systematically reviewed the effect of growth factors on vaginal wound healing in both <i>in vitro</i> and animal studies. For each independent comparison, the standardized mean difference and 95% CI were calculated using the Hedges' g correction. Of the 3858 retrieved studies, seven studies were included, of which six were included in meta-analysis (three <i>in vitro</i> studies and four <i>in vivo</i> studies). <i>In vitro</i>, basic fibroblast growth factor (bFGF) promotes proliferation, differentiation, and collagen types I and III production. Epidermal growth factor stimulates proliferation and connective tissue growth factor promotes Tenascin-C expression. These effects, however, are less pronounced <i>in vivo</i>; only bFGF slightly promotes collagen production. The review shows that growth factors, particularly bFGF, are able to promote vaginal wound healing <i>in vitro</i>. The uncertain <i>in vivo</i> findings suggest that preclinical models should be improved. The ultimate goal is to develop effective growth factor-supplemented therapies that improve surgical outcomes for POP.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":"29 4","pages":"429-440"},"PeriodicalIF":5.1000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10701546/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering. Part B, Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEB.2022.0225","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 1

Abstract

Surgical outcomes of pelvic organ prolapse (POP) surgery are poor, resulting in a 20% recurrence risk. Following the hypothesis that impaired wound healing is the main determinant of recurrent POP, growth factors have the potential to promote wound healing and may improve surgical outcomes. In this study, we systematically reviewed the effect of growth factors on vaginal wound healing in both in vitro and animal studies. For each independent comparison, the standardized mean difference and 95% CI were calculated using the Hedges' g correction. Of the 3858 retrieved studies, seven studies were included, of which six were included in meta-analysis (three in vitro studies and four in vivo studies). In vitro, basic fibroblast growth factor (bFGF) promotes proliferation, differentiation, and collagen types I and III production. Epidermal growth factor stimulates proliferation and connective tissue growth factor promotes Tenascin-C expression. These effects, however, are less pronounced in vivo; only bFGF slightly promotes collagen production. The review shows that growth factors, particularly bFGF, are able to promote vaginal wound healing in vitro. The uncertain in vivo findings suggest that preclinical models should be improved. The ultimate goal is to develop effective growth factor-supplemented therapies that improve surgical outcomes for POP.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生长因子对阴道伤口愈合的影响:系统回顾与元分析》。
盆腔器官脱垂(POP)手术的疗效不佳,导致 20% 的复发风险。根据伤口愈合受损是 POP 复发的主要决定因素这一假设,生长因子有可能促进伤口愈合,并改善手术效果。在本研究中,我们系统回顾了生长因子在体外和动物实验中对阴道伤口愈合的影响。对于每项独立比较,均采用 Hedges'g 校正法计算标准化平均差和 95% CI。在检索到的 3858 项研究中,共纳入了 7 项研究,其中 6 项纳入了荟萃分析(3 项体外研究和 4 项体内研究)。在体外,碱性成纤维细胞生长因子(bFGF)可促进增殖、分化以及 I 型和 III 型胶原蛋白的生成。表皮生长因子刺激增殖,结缔组织生长因子促进 Tenascin-C 的表达。但这些作用在体内并不明显,只有碱性生长因子能轻微促进胶原蛋白的生成。综述显示,生长因子,尤其是碱性成纤维细胞生长因子,能够在体外促进阴道伤口愈合。不确定的体内研究结果表明,临床前模型应加以改进。最终目标是开发出有效的生长因子辅助疗法,改善 POP 的手术效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Tissue Engineering. Part B, Reviews
Tissue Engineering. Part B, Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
12.80
自引率
1.60%
发文量
150
期刊介绍: Tissue Engineering Reviews (Part B) meets the urgent need for high-quality review articles by presenting critical literature overviews and systematic summaries of research within the field to assess the current standing and future directions within relevant areas and technologies. Part B publishes bi-monthly.
期刊最新文献
Biomechanics of Negative-Pressure-Assisted Liposuction and Their Influence on Fat Regeneration. Artificial Neural Networks: A New Frontier in Dental Tissue Regeneration. Efficacy of Fresh Versus Preserved Amniotic Membrane Grafts for Ocular Surface Reconstruction: Meta-analysis. Tissue Engineering Nasal Cartilage Grafts with Three-Dimensional Printing: A Comprehensive Review. Delivery Strategies of Growth Factors in Cartilage Tissue Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1