Roxana Noriega-Navarro, Ricardo J Martínez-Tapia, Juan L Osornio-Hernández, Lucia Landa-Navarro, Luis O Xinastle-Castillo, Abraham Landa, Luz Navarro
{"title":"Neuroprotection of Thioredoxin1 in the Brain.","authors":"Roxana Noriega-Navarro, Ricardo J Martínez-Tapia, Juan L Osornio-Hernández, Lucia Landa-Navarro, Luis O Xinastle-Castillo, Abraham Landa, Luz Navarro","doi":"10.2174/1567205020666230809145041","DOIUrl":null,"url":null,"abstract":"<p><p>Thioredoxin1 (Trx1) is a ubiquitous antioxidant protein that regulates the cell's redox status. Trx1's thiol redox activity protects neurons from various physiological processes that cause neuronal damage and neurodegeneration, including oxidative stress, apoptosis, and inflammation. Several studies have found that direct or indirect Trx1 regulation has neuroprotective effects in the brain, protecting against, preventing, or delaying neurodegenerative processes or brain traumas. This review focuses on the term neuroprotection, Trx1 localization, and expression in the brain, as well as its modulation concerning its neuroprotective effect in both animal and clinical models of ischemia, hypoxia, hemorrhage, traumatic brain injury, epilepsy, Alzheimer's disease, and Parkinson's disease.</p>","PeriodicalId":10810,"journal":{"name":"Current Alzheimer research","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Alzheimer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1567205020666230809145041","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Thioredoxin1 (Trx1) is a ubiquitous antioxidant protein that regulates the cell's redox status. Trx1's thiol redox activity protects neurons from various physiological processes that cause neuronal damage and neurodegeneration, including oxidative stress, apoptosis, and inflammation. Several studies have found that direct or indirect Trx1 regulation has neuroprotective effects in the brain, protecting against, preventing, or delaying neurodegenerative processes or brain traumas. This review focuses on the term neuroprotection, Trx1 localization, and expression in the brain, as well as its modulation concerning its neuroprotective effect in both animal and clinical models of ischemia, hypoxia, hemorrhage, traumatic brain injury, epilepsy, Alzheimer's disease, and Parkinson's disease.
期刊介绍:
Current Alzheimer Research publishes peer-reviewed frontier review, research, drug clinical trial studies and letter articles on all areas of Alzheimer’s disease. This multidisciplinary journal will help in understanding the neurobiology, genetics, pathogenesis, and treatment strategies of Alzheimer’s disease. The journal publishes objective reviews written by experts and leaders actively engaged in research using cellular, molecular, and animal models. The journal also covers original articles on recent research in fast emerging areas of molecular diagnostics, brain imaging, drug development and discovery, and clinical aspects of Alzheimer’s disease. Manuscripts are encouraged that relate to the synergistic mechanism of Alzheimer''s disease with other dementia and neurodegenerative disorders. Book reviews, meeting reports and letters-to-the-editor are also published. The journal is essential reading for researchers, educators and physicians with interest in age-related dementia and Alzheimer’s disease. Current Alzheimer Research provides a comprehensive ''bird''s-eye view'' of the current state of Alzheimer''s research for neuroscientists, clinicians, health science planners, granting, caregivers and families of this devastating disease.