Alessandro Gentilin, Paolo Moghetti, Antonio Cevese, Anna Vittoria Mattioli, Federico Schena, Cantor Tarperi
{"title":"Circadian and sex differences in post-ischemic vasodilation and reactive hyperemia in young individuals and elderly with and without type 2 diabetes","authors":"Alessandro Gentilin, Paolo Moghetti, Antonio Cevese, Anna Vittoria Mattioli, Federico Schena, Cantor Tarperi","doi":"10.1111/micc.12818","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>Cardiovascular events show morning preference and sex differences, and are related to aging and type 2 diabetes. We assessed circadian variations and sex differences in vascular conductance (VC) and blood flow (BF) regulations following a brief bout of forearm ischemia.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Young healthy individuals (H18-30) and elderly without (H50-80) and with type 2 diabetes (T2DM50-80) of both sexes were included. Forearm VC and BF, and mean arterial pressure (MAP) at baseline and following circulatory reperfusion were measured at 6 a.m. and 9 p.m.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>In the morning compared to evening, following reperfusion, the VC and BF increments were similar in H18-30 (p<i>></i>.71), but lower in H50-80 (p<i><</i>.001) and T2DM50-80 (p<i><</i>.01). VC and BF following circulatory reperfusion were higher in men than women in H18-30 (p<i><</i>.001), but similar between sexes in the older groups (p<i>></i>.23).</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Forearm vasodilation following reperfusion is attenuated in the morning in the elderly, impairing BF towards an ischemic area. Diabetes does not affect the circadian regulation of VC and BF, but that of MAP. There are sex differences in VC and BF at baseline and after circulatory reperfusion at a young age, being greater in men, which disappear with aging without being affected by diabetes.</p>\n </section>\n </div>","PeriodicalId":18459,"journal":{"name":"Microcirculation","volume":"30 5-6","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microcirculation","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/micc.12818","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
Cardiovascular events show morning preference and sex differences, and are related to aging and type 2 diabetes. We assessed circadian variations and sex differences in vascular conductance (VC) and blood flow (BF) regulations following a brief bout of forearm ischemia.
Methods
Young healthy individuals (H18-30) and elderly without (H50-80) and with type 2 diabetes (T2DM50-80) of both sexes were included. Forearm VC and BF, and mean arterial pressure (MAP) at baseline and following circulatory reperfusion were measured at 6 a.m. and 9 p.m.
Results
In the morning compared to evening, following reperfusion, the VC and BF increments were similar in H18-30 (p>.71), but lower in H50-80 (p<.001) and T2DM50-80 (p<.01). VC and BF following circulatory reperfusion were higher in men than women in H18-30 (p<.001), but similar between sexes in the older groups (p>.23).
Conclusions
Forearm vasodilation following reperfusion is attenuated in the morning in the elderly, impairing BF towards an ischemic area. Diabetes does not affect the circadian regulation of VC and BF, but that of MAP. There are sex differences in VC and BF at baseline and after circulatory reperfusion at a young age, being greater in men, which disappear with aging without being affected by diabetes.
期刊介绍:
The journal features original contributions that are the result of investigations contributing significant new information relating to the vascular and lymphatic microcirculation addressed at the intact animal, organ, cellular, or molecular level. Papers describe applications of the methods of physiology, biophysics, bioengineering, genetics, cell biology, biochemistry, and molecular biology to problems in microcirculation.
Microcirculation also publishes state-of-the-art reviews that address frontier areas or new advances in technology in the fields of microcirculatory disease and function. Specific areas of interest include: Angiogenesis, growth and remodeling; Transport and exchange of gasses and solutes; Rheology and biorheology; Endothelial cell biology and metabolism; Interactions between endothelium, smooth muscle, parenchymal cells, leukocytes and platelets; Regulation of vasomotor tone; and Microvascular structures, imaging and morphometry. Papers also describe innovations in experimental techniques and instrumentation for studying all aspects of microcirculatory structure and function.