Aluminum Oxide-Coated Particle Differentiation Employing Supervised Machine Learning and Impedance Cytometry.

Brandon K Ashley, Jianye Sui, Mehdi Javanmard, Umer Hassan
{"title":"Aluminum Oxide-Coated Particle Differentiation Employing Supervised Machine Learning and Impedance Cytometry.","authors":"Brandon K Ashley, Jianye Sui, Mehdi Javanmard, Umer Hassan","doi":"10.1109/nems54180.2022.9791160","DOIUrl":null,"url":null,"abstract":"<p><p>This article uses a supervised machine learning (ML) system for identifying groups of nanoparticles coated with metal oxides of varying thicknesses using a microfluidic impedance cytometer. These particles generate unique impedance signatures when probed with a multifrequency electric field and finds applications in enabling many multiplexed biosensing technologies. However, current experimental and data processing techniques are unable to sensitively differentiate different metal oxide coated particle types. Here, we employ various machine learning models and collect multiple particle metrics measured. In reported experiments, a 75% accuracy was determined to separate aluminum oxide coated (10nm and 30nm), which is significantly greater than observing only univariate data between different microparticle types. This approach will enable ML models to differentiate such particles with greater accuracies.</p>","PeriodicalId":73285,"journal":{"name":"IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE International Conference on Nano/Micro Engineered and Molecular Systems","volume":"2022 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9245459/pdf/nihms-1817213.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Nano/Micro Engineered and Molecular Systems. IEEE International Conference on Nano/Micro Engineered and Molecular Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/nems54180.2022.9791160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article uses a supervised machine learning (ML) system for identifying groups of nanoparticles coated with metal oxides of varying thicknesses using a microfluidic impedance cytometer. These particles generate unique impedance signatures when probed with a multifrequency electric field and finds applications in enabling many multiplexed biosensing technologies. However, current experimental and data processing techniques are unable to sensitively differentiate different metal oxide coated particle types. Here, we employ various machine learning models and collect multiple particle metrics measured. In reported experiments, a 75% accuracy was determined to separate aluminum oxide coated (10nm and 30nm), which is significantly greater than observing only univariate data between different microparticle types. This approach will enable ML models to differentiate such particles with greater accuracies.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用监督机器学习和阻抗细胞测量法区分氧化铝涂层粒子
本文利用微流体阻抗细胞计,采用有监督的机器学习(ML)系统识别涂有不同厚度金属氧化物的纳米粒子群。这些颗粒在多频电场的作用下会产生独特的阻抗特征,可应用于多种多重生物传感技术。然而,目前的实验和数据处理技术无法灵敏地区分不同的金属氧化物涂层颗粒类型。在此,我们采用了各种机器学习模型,并收集了测量到的多种粒子指标。在报告的实验中,我们确定区分氧化铝涂层(10 纳米和 30 纳米)的准确率为 75%,明显高于仅观察不同微粒类型之间的单变量数据。这种方法将使 ML 模型能够以更高的精度区分此类微粒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Aluminum Oxide-Coated Particle Differentiation Employing Supervised Machine Learning and Impedance Cytometry. The Design and Control of Magnetized Cell-Based Microrobot for Targeting Drug Delivery Inexhaustible Battery: An Energy Harvester Based Battery for IoT Applications Fabrication of Magneto-Rheological Fluid with Double Frameworks Letter from the general chair
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1