Marco Zeppilli , Hafsa Yaqoubi , Edoardo Dell’Armi , Agnese Lai , Mustapha Belfaquir , Laura Lorini , Marco Petrangeli Papini
{"title":"Tetrachloroethane (TeCA) removal through sequential graphite-mixed metal oxide electrodes in a bioelectrochemical reactor","authors":"Marco Zeppilli , Hafsa Yaqoubi , Edoardo Dell’Armi , Agnese Lai , Mustapha Belfaquir , Laura Lorini , Marco Petrangeli Papini","doi":"10.1016/j.ese.2023.100309","DOIUrl":null,"url":null,"abstract":"<div><p>Electro-bioremediation offers a promising approach for eliminating persistent pollutants from groundwater since allows the stimulation of biological dechlorinating activity, utilizing renewable electricity for process operation and avoiding the injection of chemicals into aquifers. In this study, a two-chamber microbial electrolysis cell has been utilized to achieve both reductive and oxidative degradation of tetrachloroethane (TeCA). By polarizing the graphite granules cathodic chamber at −650 mV vs the standard hydrogen electrode and employing a mixed metal oxide (MMO) counter electrode for oxygen production, the reductive and oxidative environment necessary for TeCA removal has been established. Continuous experiments were conducted using two feeding solutions: an optimized mineral medium for dechlorinating microorganisms, and synthetic groundwater containing sulphate and nitrate anions to investigate potential side reactions. The bioelectrochemical process efficiently reduced TeCA to a mixture of <em>trans</em>-dichloroethylene, vinyl chloride, and ethylene, which were subsequently oxidized in the anodic chamber with removal efficiencies of 37 ± 2%, 100 ± 4%, and 100 ± 5%, respectively. The introduction of synthetic groundwater with nitrate and sulphate stimulated reductions in these ions in the cathodic chamber, leading to a 17% decrease in the reductive dechlorination rate and the appearance of other chlorinated by-products, including <em>cis</em>-dichloroethylene and 1,2-dichloroethane (1,2-DCA), in the cathode effluent. Notably, despite the lower reductive dechlorination rate during synthetic groundwater operation, aerobic dechlorinating microorganisms within the anodic chamber completely removed VC and 1,2-DCA. This study represents the first demonstration of a sequential reductive and oxidative bioelectrochemical process for TeCA mineralization in a synthetic solution simulating contaminated groundwater.</p></div>","PeriodicalId":34434,"journal":{"name":"Environmental Science and Ecotechnology","volume":"17 ","pages":"Article 100309"},"PeriodicalIF":14.0000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/58/eb/main.PMC10406622.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Ecotechnology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666498423000741","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Electro-bioremediation offers a promising approach for eliminating persistent pollutants from groundwater since allows the stimulation of biological dechlorinating activity, utilizing renewable electricity for process operation and avoiding the injection of chemicals into aquifers. In this study, a two-chamber microbial electrolysis cell has been utilized to achieve both reductive and oxidative degradation of tetrachloroethane (TeCA). By polarizing the graphite granules cathodic chamber at −650 mV vs the standard hydrogen electrode and employing a mixed metal oxide (MMO) counter electrode for oxygen production, the reductive and oxidative environment necessary for TeCA removal has been established. Continuous experiments were conducted using two feeding solutions: an optimized mineral medium for dechlorinating microorganisms, and synthetic groundwater containing sulphate and nitrate anions to investigate potential side reactions. The bioelectrochemical process efficiently reduced TeCA to a mixture of trans-dichloroethylene, vinyl chloride, and ethylene, which were subsequently oxidized in the anodic chamber with removal efficiencies of 37 ± 2%, 100 ± 4%, and 100 ± 5%, respectively. The introduction of synthetic groundwater with nitrate and sulphate stimulated reductions in these ions in the cathodic chamber, leading to a 17% decrease in the reductive dechlorination rate and the appearance of other chlorinated by-products, including cis-dichloroethylene and 1,2-dichloroethane (1,2-DCA), in the cathode effluent. Notably, despite the lower reductive dechlorination rate during synthetic groundwater operation, aerobic dechlorinating microorganisms within the anodic chamber completely removed VC and 1,2-DCA. This study represents the first demonstration of a sequential reductive and oxidative bioelectrochemical process for TeCA mineralization in a synthetic solution simulating contaminated groundwater.
期刊介绍:
Environmental Science & Ecotechnology (ESE) is an international, open-access journal publishing original research in environmental science, engineering, ecotechnology, and related fields. Authors publishing in ESE can immediately, permanently, and freely share their work. They have license options and retain copyright. Published by Elsevier, ESE is co-organized by the Chinese Society for Environmental Sciences, Harbin Institute of Technology, and the Chinese Research Academy of Environmental Sciences, under the supervision of the China Association for Science and Technology.