{"title":"Analysis of the rat chorda tympani nerve response to \"super salty\" sodium carbonate.","authors":"Joseph M Breza, Steven J St John","doi":"10.1093/chemse/bjad015","DOIUrl":null,"url":null,"abstract":"<p><p>In behavioral experiments, rats perceive sodium carbonate (Na2CO3) as super salty. In fact, when the dissociated Na+ ions are accounted for, rats perceive Na2CO3 as 5× saltier than equinormal concentrations of NaCl. The chorda tympani nerve (CT) responds to salts through at least two receptor mechanisms and is a model system for understanding how salt taste is transmitted to the brain. Here, we recorded CT nerve activity to a broad range of NaCl (3-300 mM) and Na2CO3 (3-300 mN) to investigate why Na2CO3 tastes so salty to rats. Benzamil, a specific epithelial sodium channel (ENaC) antagonist, was used to determine the relative contribution of apical ENaCs in Na2CO3 transduction. The benzamil-insensitive component of CT nerve responses was enhanced by increasing the adapted tongue temperature from 23°C to 30°C. Na2CO3 solutions are alkaline, so we compared neural responses (with and without benzamil) to 100 mM NaCl alone (6.2 pH) and at a pH (11.2 pH) that matched 100 mN Na2CO3. As expected, NaCl responses increased progressively with increasing concentration and temperature. Responses to 3 mN Na2CO3 were greater than 3 mM NaCl with and without benzamil, but the shape of the first log-fold range of was relatively flat. Adjusting the pH of NaCl to 11.2 abolished the thermal enhancement of 100 mN NaCl through the benzamil-insensitive pathway. Rinsing Na2CO3 off the tongue resulted in robust aftertaste that was concentration dependent, thermally sensitive, and benzamil-insensitive. Responses to alkaline NaCl did not recapitulate Na2CO3 responses or aftertaste, suggesting multiple transduction mechanisms for the cations (2Na+) and anion (CO3-2).</p>","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10413316/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Senses","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1093/chemse/bjad015","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In behavioral experiments, rats perceive sodium carbonate (Na2CO3) as super salty. In fact, when the dissociated Na+ ions are accounted for, rats perceive Na2CO3 as 5× saltier than equinormal concentrations of NaCl. The chorda tympani nerve (CT) responds to salts through at least two receptor mechanisms and is a model system for understanding how salt taste is transmitted to the brain. Here, we recorded CT nerve activity to a broad range of NaCl (3-300 mM) and Na2CO3 (3-300 mN) to investigate why Na2CO3 tastes so salty to rats. Benzamil, a specific epithelial sodium channel (ENaC) antagonist, was used to determine the relative contribution of apical ENaCs in Na2CO3 transduction. The benzamil-insensitive component of CT nerve responses was enhanced by increasing the adapted tongue temperature from 23°C to 30°C. Na2CO3 solutions are alkaline, so we compared neural responses (with and without benzamil) to 100 mM NaCl alone (6.2 pH) and at a pH (11.2 pH) that matched 100 mN Na2CO3. As expected, NaCl responses increased progressively with increasing concentration and temperature. Responses to 3 mN Na2CO3 were greater than 3 mM NaCl with and without benzamil, but the shape of the first log-fold range of was relatively flat. Adjusting the pH of NaCl to 11.2 abolished the thermal enhancement of 100 mN NaCl through the benzamil-insensitive pathway. Rinsing Na2CO3 off the tongue resulted in robust aftertaste that was concentration dependent, thermally sensitive, and benzamil-insensitive. Responses to alkaline NaCl did not recapitulate Na2CO3 responses or aftertaste, suggesting multiple transduction mechanisms for the cations (2Na+) and anion (CO3-2).
期刊介绍:
Chemical Senses publishes original research and review papers on all aspects of chemoreception in both humans and animals. An important part of the journal''s coverage is devoted to techniques and the development and application of new methods for investigating chemoreception and chemosensory structures.