Comparison of different neurite density metrics with brain asymmetry evaluation.

IF 2.4 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Zeitschrift fur Medizinische Physik Pub Date : 2023-08-07 DOI:10.1016/j.zemedi.2023.07.003
Ivan I Maximov, Lars T Westlye
{"title":"Comparison of different neurite density metrics with brain asymmetry evaluation.","authors":"Ivan I Maximov,&nbsp;Lars T Westlye","doi":"10.1016/j.zemedi.2023.07.003","DOIUrl":null,"url":null,"abstract":"<p><p>The standard diffusion MRI model with intra- and extra-axonal water pools offers a set of microstructural parameters describing brain white matter architecture. However, non-linearities in the standard model and diffusion data contamination by noise and imaging artefacts make estimation of diffusion metrics challenging. In order to develop reliable diffusion approaches and to avoid computational model degeneracy, additional theoretical assumptions allowing stable numerical implementations are required. Advanced diffusion approaches allow for estimation of intra-axonal water fraction (AWF), describing a key structural characteristic of brain tissue. AWF can be interpreted as an indirect measure or proxy of neurite density and has a potential as useful clinical biomarker. Established diffusion approaches such as white matter tract integrity, neurite orientation dispersion and density imaging (NODDI), and spherical mean technique provide estimates of AWF within their respective theoretical frameworks. In the present study, we estimated AWF metrics using different diffusion approaches and compared measures of brain asymmetry between the different metrics in a sub-sample of 182 subjects from the UK Biobank. Multivariate decomposition by mean of linked independent component analysis revealed that the various AWF proxies derived from the different diffusion approaches reflect partly non-overlapping variance of independent components, with distinct anatomical distributions and sensitivity to age. Further, voxel-wise analysis revealed age-related differences in AWF-based brain asymmetry, indicating less apparent left-right hemisphere difference with higher age. Finally, we demonstrated that NODDI metrics suffer from a quite strong dependence on used numerical algorithms and post-processing pipeline. The analysis based on AWF metrics strongly depends on the used diffusion approach and leads to poorly reproducible results.</p>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Medizinische Physik","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.zemedi.2023.07.003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 1

Abstract

The standard diffusion MRI model with intra- and extra-axonal water pools offers a set of microstructural parameters describing brain white matter architecture. However, non-linearities in the standard model and diffusion data contamination by noise and imaging artefacts make estimation of diffusion metrics challenging. In order to develop reliable diffusion approaches and to avoid computational model degeneracy, additional theoretical assumptions allowing stable numerical implementations are required. Advanced diffusion approaches allow for estimation of intra-axonal water fraction (AWF), describing a key structural characteristic of brain tissue. AWF can be interpreted as an indirect measure or proxy of neurite density and has a potential as useful clinical biomarker. Established diffusion approaches such as white matter tract integrity, neurite orientation dispersion and density imaging (NODDI), and spherical mean technique provide estimates of AWF within their respective theoretical frameworks. In the present study, we estimated AWF metrics using different diffusion approaches and compared measures of brain asymmetry between the different metrics in a sub-sample of 182 subjects from the UK Biobank. Multivariate decomposition by mean of linked independent component analysis revealed that the various AWF proxies derived from the different diffusion approaches reflect partly non-overlapping variance of independent components, with distinct anatomical distributions and sensitivity to age. Further, voxel-wise analysis revealed age-related differences in AWF-based brain asymmetry, indicating less apparent left-right hemisphere difference with higher age. Finally, we demonstrated that NODDI metrics suffer from a quite strong dependence on used numerical algorithms and post-processing pipeline. The analysis based on AWF metrics strongly depends on the used diffusion approach and leads to poorly reproducible results.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不同神经突密度指标与脑不对称评价的比较。
具有轴突内和轴突外水池的标准弥散MRI模型提供了一组描述脑白质结构的微结构参数。然而,标准模型中的非线性和受噪声和成像伪影污染的扩散数据使得扩散度量的估计具有挑战性。为了开发可靠的扩散方法并避免计算模型退化,需要允许稳定数值实现的附加理论假设。先进的扩散方法允许估计轴突内水分数(AWF),描述脑组织的关键结构特征。AWF可以被解释为神经突密度的间接测量或代理,具有潜在的有用的临床生物标志物。已建立的扩散方法,如白质束完整性、神经突取向弥散和密度成像(NODDI)和球面平均技术,在各自的理论框架内提供了AWF的估计。在本研究中,我们使用不同的扩散方法估计了AWF指标,并比较了来自英国生物银行的182名受试者的不同指标之间的大脑不对称测量。通过关联独立分量分析进行多元分解,发现不同扩散方法得到的AWF指标部分反映了独立分量的非重叠方差,具有不同的解剖分布和对年龄的敏感性。此外,体素分析揭示了基于awf的大脑不对称性的年龄相关差异,表明年龄越大,左右半球差异越不明显。最后,我们证明了NODDI指标非常依赖于所使用的数值算法和后处理管道。基于AWF指标的分析强烈依赖于所使用的扩散方法,导致结果的可重复性很差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.70
自引率
10.00%
发文量
69
审稿时长
65 days
期刊介绍: Zeitschrift fur Medizinische Physik (Journal of Medical Physics) is an official organ of the German and Austrian Society of Medical Physic and the Swiss Society of Radiobiology and Medical Physics.The Journal is a platform for basic research and practical applications of physical procedures in medical diagnostics and therapy. The articles are reviewed following international standards of peer reviewing. Focuses of the articles are: -Biophysical methods in radiation therapy and nuclear medicine -Dosimetry and radiation protection -Radiological diagnostics and quality assurance -Modern imaging techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography -Ultrasonography diagnostics, application of laser and UV rays -Electronic processing of biosignals -Artificial intelligence and machine learning in medical physics In the Journal, the latest scientific insights find their expression in the form of original articles, reviews, technical communications, and information for the clinical practice.
期刊最新文献
Editorial Board Contents Development and clinical implementation of a digital system for risk assessments for radiation therapy End-to-end testing for stereotactic radiotherapy including the development of a Multi-Modality phantom Note on uncertainty in Monte Carlo dose calculations and its relation to microdosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1