{"title":"HDAC11 is related to breast cancer prognosis and inhibits invasion and proliferation of breast cancer cells.","authors":"Hao Zhao, Xu-Ming Zhang, Sheng Xiao, Zhen-Ru Wu, Yu-Jun Shi, Ming-Jun Xie","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Histone deacetylases (HDACs) not only regulate histone acetylation but also participate in many pathophysiologic processes, especially the development of cancer, including breast cancer. However, whether Histone deacetylase 11 can influence breast cancer is still unknown. This study investigated the relationship between HDAC11 expression in breast cancers and clinicopathologic parameters, and used small interference RNA (siRNA) to determine the biological behavioural changes after knockdown of HDAC11.</p><p><strong>Methods: </strong>Immunohistochemical (IHC) staining was employed to detect the expression of HDAC11 in a tissue microarray (TMA) of 145 patients with invasive ductal breast carcinoma. Transwell and wound healing assays were employed to analyze cell invasion and migration. The proliferation ability of cells was determined by Cell Counting Kit (CCK8).</p><p><strong>Results: </strong>The results show that the expression of HDAC11 was positively correlated with the overall survival (OS) of breast cancer patients. Specific HDAC11 knockdown enhanced MDA-MB-231 cell proliferation, migration, and invasion.</p><p><strong>Conclusion: </strong>In conclusion, this study found that HDAC11 expression is positively correlated with the overall survival rate of patients. HDAC11 can inhibit the invasion and proliferation of breast cancer cells to a certain extent and can be used as a good prognosis marker.</p>","PeriodicalId":13943,"journal":{"name":"International journal of clinical and experimental pathology","volume":"16 7","pages":"172-183"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10408431/pdf/ijcep0016-0172.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of clinical and experimental pathology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Histone deacetylases (HDACs) not only regulate histone acetylation but also participate in many pathophysiologic processes, especially the development of cancer, including breast cancer. However, whether Histone deacetylase 11 can influence breast cancer is still unknown. This study investigated the relationship between HDAC11 expression in breast cancers and clinicopathologic parameters, and used small interference RNA (siRNA) to determine the biological behavioural changes after knockdown of HDAC11.
Methods: Immunohistochemical (IHC) staining was employed to detect the expression of HDAC11 in a tissue microarray (TMA) of 145 patients with invasive ductal breast carcinoma. Transwell and wound healing assays were employed to analyze cell invasion and migration. The proliferation ability of cells was determined by Cell Counting Kit (CCK8).
Results: The results show that the expression of HDAC11 was positively correlated with the overall survival (OS) of breast cancer patients. Specific HDAC11 knockdown enhanced MDA-MB-231 cell proliferation, migration, and invasion.
Conclusion: In conclusion, this study found that HDAC11 expression is positively correlated with the overall survival rate of patients. HDAC11 can inhibit the invasion and proliferation of breast cancer cells to a certain extent and can be used as a good prognosis marker.
期刊介绍:
The International Journal of Clinical and Experimental Pathology (IJCEP, ISSN 1936-2625) is a peer reviewed, open access online journal. It was founded in 2008 by an international group of academic pathologists and scientists who are devoted to the scientific exploration of human disease and the rapid dissemination of original data. Unlike most other open access online journals, IJCEP will keep all the traditional features of paper print that we are all familiar with, such as continuous volume and issue numbers, as well as continuous page numbers to keep our warm feelings towards an academic journal. Unlike most other open access online journals, IJCEP will keep all the traditional features of paper print that we are all familiar with, such as continuous volume and issue numbers, as well as continuous page numbers to keep our warm feelings towards an academic journal.