{"title":"Evaluation of the Weeds around Capsicum annuum (CA) Cultivation Fields as Potential Habitats of CA-Infecting Viruses.","authors":"Min-Kyung Choi","doi":"10.5423/PPJ.OA.04.2023.0066","DOIUrl":null,"url":null,"abstract":"<p><p>Capsicum annuum (CA) is grown outdoors across fields in Jeollabuk-do, South Korea. The weeds surrounding these fields were investigated regarding the infection of 11 viruses infecting CA during the year 2014-2018. In the reverse transcription polymerase chain reaction diagnosis, 546 out of 821 CA samples (66.5%) were infected by nine viruses, and 190 out of 918 weed samples (20.7%) were infected by eight viruses. Correlation analysis of the mutual influence of the viruses infecting CA and weeds during these 5 years showed that five viruses had significant positive correlations with the infection in both CA and weeds. Over the study period, the weeds infected by cucumber mosaic virus (CMV) in the previous year were positively correlated with the incidence of CMV infection in CA in the current year, although the correlation was lower for tomato spotted wilt virus (TSWV) compared to CMV. The CMV infection percent was 14.0% in summer annuals, 11.4% in perennials, and 7.8% in winter annuals. However, considering the overwintering period without CA, the infection percent was 5.2% higher in winter annuals and perennials than that in summer annuals, indicating that winter annual and perennial weeds served as the main habitats for insect vectors. The TSWV infection percent in weeds was 10.4% in summer annuals, 6.4% in winter annuals, and 6.2% in perennials. The weeds surrounding CA fields, acting as the intermediate hosts, were found to be the potent sources of infection, influencing the spread and diversity of CA-infecting viruses. The results of this study can contribute to prevent viral infection in agricultural fields.</p>","PeriodicalId":20173,"journal":{"name":"Plant Pathology Journal","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/e2/4c/ppj-oa-04-2023-0066.PMC10412962.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Pathology Journal","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5423/PPJ.OA.04.2023.0066","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Capsicum annuum (CA) is grown outdoors across fields in Jeollabuk-do, South Korea. The weeds surrounding these fields were investigated regarding the infection of 11 viruses infecting CA during the year 2014-2018. In the reverse transcription polymerase chain reaction diagnosis, 546 out of 821 CA samples (66.5%) were infected by nine viruses, and 190 out of 918 weed samples (20.7%) were infected by eight viruses. Correlation analysis of the mutual influence of the viruses infecting CA and weeds during these 5 years showed that five viruses had significant positive correlations with the infection in both CA and weeds. Over the study period, the weeds infected by cucumber mosaic virus (CMV) in the previous year were positively correlated with the incidence of CMV infection in CA in the current year, although the correlation was lower for tomato spotted wilt virus (TSWV) compared to CMV. The CMV infection percent was 14.0% in summer annuals, 11.4% in perennials, and 7.8% in winter annuals. However, considering the overwintering period without CA, the infection percent was 5.2% higher in winter annuals and perennials than that in summer annuals, indicating that winter annual and perennial weeds served as the main habitats for insect vectors. The TSWV infection percent in weeds was 10.4% in summer annuals, 6.4% in winter annuals, and 6.2% in perennials. The weeds surrounding CA fields, acting as the intermediate hosts, were found to be the potent sources of infection, influencing the spread and diversity of CA-infecting viruses. The results of this study can contribute to prevent viral infection in agricultural fields.