Hehe Qin, Xinru Liu, Xiangyun Liu, Hongying Zhao, Shun Mao
{"title":"Highly Selective Electrocatalytic CuEDTA Reduction by MoS2 Nanosheets for Efficient Pollutant Removal and Simultaneous Electric Power Output","authors":"Hehe Qin, Xinru Liu, Xiangyun Liu, Hongying Zhao, Shun Mao","doi":"10.1007/s40820-023-01166-7","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n <ul>\n <li>\n <p>Highly efficient CuEDTA removal by an electrolyzer with MoS<sub>2</sub> nanosheet cathode.</p>\n </li>\n <li>\n <p>Higher removal rate and Faraday efficiency compared with other widely reported electrocatalytic technologies.</p>\n </li>\n <li>\n <p>CuEDTA/Zn primary battery is constructed for the first time to realize CuEDTA removal and synchronous power generation.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":48779,"journal":{"name":"Nano-Micro Letters","volume":"15 1","pages":""},"PeriodicalIF":31.6000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10412521/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-023-01166-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Highlights
Highly efficient CuEDTA removal by an electrolyzer with MoS2 nanosheet cathode.
Higher removal rate and Faraday efficiency compared with other widely reported electrocatalytic technologies.
CuEDTA/Zn primary battery is constructed for the first time to realize CuEDTA removal and synchronous power generation.
乙二胺四乙酸铜(CuEDTA)是一种典型的难降解重金属络合污染物,电催化还原是一种在温和条件下运行的环保型方法。然而,CuEDTA的选择性还原仍然是阴极过程中的一大挑战。在这项工作中,我们报道了一种MoS2纳米片/石墨毡(GF)阴极,在- 0.65 V vs SCE(饱和甘汞电极)下,对CuEDTA的平均法拉第效率为29.6%,比去除率(SRR)为0.042 mol/cm2/h,这两者都远高于通常报道的基于电氧化技术的去除系统。此外,还展示了一种具有锌阳极和MoS2/GF阴极的CuEDTA/Zn电池的概念验证,该电池具有同时去除CuEDTA和能量输出的双重功能。本研究是重金属配合物电催化还原和CuEDTA/Zn电池的先驱研究之一,为开发高效的电催化还原系统用于污染控制和能源输出提供了新的见解。
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary and open-access journal that focus on science, experiments, engineering, technologies and applications of nano- or microscale structure and system in physics, chemistry, biology, material science, pharmacy and their expanding interfaces with at least one dimension ranging from a few sub-nanometers to a few hundreds of micrometers. Especially, emphasize the bottom-up approach in the length scale from nano to micro since the key for nanotechnology to reach industrial applications is to assemble, to modify, and to control nanostructure in micro scale. The aim is to provide a publishing platform crossing the boundaries, from nano to micro, and from science to technologies.