Elena N. Temereva, Maria A. Isaeva, Igor A. Kosevich
{"title":"Unusual lophophore innervation in ctenostome Flustrellidra hispida (Bryozoa)","authors":"Elena N. Temereva, Maria A. Isaeva, Igor A. Kosevich","doi":"10.1002/jez.b.23164","DOIUrl":null,"url":null,"abstract":"<p>Since ctenostomes are traditionally regarded as an ancestral clade to some other bryozoan groups, the study of additional species may help to clarify questions on bryozoan evolution and phylogeny. One of these questions is the bryozoan lophophore evolution: whether it occurred through simplification or complication. The morphology and innervation of the ctenostome <i>Flustrellidra hispida</i> (Fabricius, 1780) lophophore have been studied with electron microscopy and immunocytochemistry with confocal laser scanning microscopy. Lophophore nervous system of <i>F. hispida</i> consists of several main nerve elements: cerebral ganglion, circumoral nerve ring, and the outer nerve ring. Serotonin-like immunoreactive perikarya, which connect with the circumoral nerve ring, bear the cilium that directs to the abfrontal side of the lophophore and extends between tentacle bases. The circumoral nerve ring gives rise to the intertentacular and frontal tentacle nerves. The outer nerve ring gives rise to the abfrontal neurites, which connect to the outer groups of perikarya and contribute to the formation of the abfrontal tentacle nerve. The outer nerve ring has been described before in other bryozoans, but it never contributes to the innervation of tentacles. The presence of the outer nerve ring participating in the innervation of tentacles makes the <i>F. hispida</i> lophophore nervous system particularly similar to the lophophore nervous system of phoronids. This similarity allows to suggest that organization of the <i>F. hispida</i> lophophore nervous system may reflect the ancestral state for all bryozoans. The possible scenario of evolutionary transformation of the lophophore nervous system within bryozoans is suggested.</p>","PeriodicalId":15682,"journal":{"name":"Journal of experimental zoology. Part B, Molecular and developmental evolution","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part B, Molecular and developmental evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23164","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Since ctenostomes are traditionally regarded as an ancestral clade to some other bryozoan groups, the study of additional species may help to clarify questions on bryozoan evolution and phylogeny. One of these questions is the bryozoan lophophore evolution: whether it occurred through simplification or complication. The morphology and innervation of the ctenostome Flustrellidra hispida (Fabricius, 1780) lophophore have been studied with electron microscopy and immunocytochemistry with confocal laser scanning microscopy. Lophophore nervous system of F. hispida consists of several main nerve elements: cerebral ganglion, circumoral nerve ring, and the outer nerve ring. Serotonin-like immunoreactive perikarya, which connect with the circumoral nerve ring, bear the cilium that directs to the abfrontal side of the lophophore and extends between tentacle bases. The circumoral nerve ring gives rise to the intertentacular and frontal tentacle nerves. The outer nerve ring gives rise to the abfrontal neurites, which connect to the outer groups of perikarya and contribute to the formation of the abfrontal tentacle nerve. The outer nerve ring has been described before in other bryozoans, but it never contributes to the innervation of tentacles. The presence of the outer nerve ring participating in the innervation of tentacles makes the F. hispida lophophore nervous system particularly similar to the lophophore nervous system of phoronids. This similarity allows to suggest that organization of the F. hispida lophophore nervous system may reflect the ancestral state for all bryozoans. The possible scenario of evolutionary transformation of the lophophore nervous system within bryozoans is suggested.
期刊介绍:
Developmental Evolution is a branch of evolutionary biology that integrates evidence and concepts from developmental biology, phylogenetics, comparative morphology, evolutionary genetics and increasingly also genomics, systems biology as well as synthetic biology to gain an understanding of the structure and evolution of organisms.
The Journal of Experimental Zoology -B: Molecular and Developmental Evolution provides a forum where these fields are invited to bring together their insights to further a synthetic understanding of evolution from the molecular through the organismic level. Contributions from all these branches of science are welcome to JEZB.
We particularly encourage submissions that apply the tools of genomics, as well as systems and synthetic biology to developmental evolution. At this time the impact of these emerging fields on developmental evolution has not been explored to its fullest extent and for this reason we are eager to foster the relationship of systems and synthetic biology with devo evo.