Julia Groß, Barbara K Kreis, Hartmut Blank, Thorsten Pachur
{"title":"Knowledge updating in real-world estimation: Connecting hindsight bias and seeding effects.","authors":"Julia Groß, Barbara K Kreis, Hartmut Blank, Thorsten Pachur","doi":"10.1037/xge0001452","DOIUrl":null,"url":null,"abstract":"<p><p>When people estimate the quantities of objects (e.g., country populations), are then presented with the objects' actual quantities, and subsequently asked to remember their initial estimates, responses are often distorted towards the actual quantities. This <i>hindsight bias</i>-traditionally considered to reflect a cognitive error-has more recently been proposed to result from adaptive knowledge updating. But how to conceptualize such knowledge-updating processes and their potentially beneficial consequences? Here, we provide a framework that conceptualizes knowledge updating in the context of hindsight bias in real-world estimation by connecting it with research on <i>seeding</i> <i>effects</i>-improvements in people's estimation accuracy after exposure to numerical facts. This integrative perspective highlights a previously neglected facet of knowledge updating, namely, recalibration of metric domain knowledge, which can be expected to lead to transfer learning and thus improve estimation for objects from a domain more generally. We develop an experimental paradigm to investigate the association of hindsight bias with improved estimation accuracy. In Experiment 1, we demonstrate that the classical approach to induce hindsight bias indeed produces transfer learning. In Experiment 2, we provide evidence for the novel prediction that hindsight bias can be triggered via transfer learning; this establishes a direct link from knowledge updating to hindsight bias. Our work integrates two prominent but previously unconnected research programs on the effects of knowledge updating in real-world estimation and supports the notion that hindsight bias is driven by adaptive learning processes. (PsycInfo Database Record (c) 2024 APA, all rights reserved).</p>","PeriodicalId":15698,"journal":{"name":"Journal of Experimental Psychology: General","volume":" ","pages":"3167-3188"},"PeriodicalIF":3.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Psychology: General","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/xge0001452","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
When people estimate the quantities of objects (e.g., country populations), are then presented with the objects' actual quantities, and subsequently asked to remember their initial estimates, responses are often distorted towards the actual quantities. This hindsight bias-traditionally considered to reflect a cognitive error-has more recently been proposed to result from adaptive knowledge updating. But how to conceptualize such knowledge-updating processes and their potentially beneficial consequences? Here, we provide a framework that conceptualizes knowledge updating in the context of hindsight bias in real-world estimation by connecting it with research on seedingeffects-improvements in people's estimation accuracy after exposure to numerical facts. This integrative perspective highlights a previously neglected facet of knowledge updating, namely, recalibration of metric domain knowledge, which can be expected to lead to transfer learning and thus improve estimation for objects from a domain more generally. We develop an experimental paradigm to investigate the association of hindsight bias with improved estimation accuracy. In Experiment 1, we demonstrate that the classical approach to induce hindsight bias indeed produces transfer learning. In Experiment 2, we provide evidence for the novel prediction that hindsight bias can be triggered via transfer learning; this establishes a direct link from knowledge updating to hindsight bias. Our work integrates two prominent but previously unconnected research programs on the effects of knowledge updating in real-world estimation and supports the notion that hindsight bias is driven by adaptive learning processes. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
期刊介绍:
The Journal of Experimental Psychology: General publishes articles describing empirical work that bridges the traditional interests of two or more communities of psychology. The work may touch on issues dealt with in JEP: Learning, Memory, and Cognition, JEP: Human Perception and Performance, JEP: Animal Behavior Processes, or JEP: Applied, but may also concern issues in other subdisciplines of psychology, including social processes, developmental processes, psychopathology, neuroscience, or computational modeling. Articles in JEP: General may be longer than the usual journal publication if necessary, but shorter articles that bridge subdisciplines will also be considered.