Murad Alahdal, Roshane A Perera, Marcio Covas Moschovas, Vipul Patel, Ranjan J Perera
{"title":"Current advances of liquid biopsies in prostate cancer: Molecular biomarkers.","authors":"Murad Alahdal, Roshane A Perera, Marcio Covas Moschovas, Vipul Patel, Ranjan J Perera","doi":"10.1016/j.omto.2023.07.004","DOIUrl":null,"url":null,"abstract":"<p><p>Prostate cancer (PCa) incidence is increasing and endangers men's lives. Early detection of PCa could improve overall survival (OS) by preventing metastasis. The prostate-specific antigen (PSA) test is a popular screening method. Several advisory groups, however, warn against using the PSA test due to its high false positive rate, unsupported outcome, and limited benefit. The number of disease-related biopsies performed annually far outweighs the number of diagnoses. Thus, there is an urgent need to develop accurate diagnostic biomarkers to detect PCa and distinguish between aggressive and indolent cancers. Recently, non-coding RNA (ncRNA), circulating tumor DNA (ctDNA)/ctRNA, exosomes, and metabolomic biomarkers in the liquid biopsies (LBs) of patients with PCa showed significant differences and clinical benefits in diagnosis, prognosis, and monitoring response to therapy. The analysis of urinary exosomal ncRNA presented a substantial correlation among Exos-miR-375 downregulation, clinical T stage, and bone metastases of PCa. Furthermore, the expression of miR-532-5p in urine samples was a vital predictive biomarker of PCa progression. Thus, this review focuses on promising molecular and metabolomic biomarkers in LBs from patients with PCa. We thoroughly addressed the most recent clinical findings of LB biomarker use in diagnosing and monitoring PCa in early and advanced stages.</p>","PeriodicalId":18869,"journal":{"name":"Molecular Therapy Oncolytics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/39/6c/main.PMC10415624.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy Oncolytics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omto.2023.07.004","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 1
Abstract
Prostate cancer (PCa) incidence is increasing and endangers men's lives. Early detection of PCa could improve overall survival (OS) by preventing metastasis. The prostate-specific antigen (PSA) test is a popular screening method. Several advisory groups, however, warn against using the PSA test due to its high false positive rate, unsupported outcome, and limited benefit. The number of disease-related biopsies performed annually far outweighs the number of diagnoses. Thus, there is an urgent need to develop accurate diagnostic biomarkers to detect PCa and distinguish between aggressive and indolent cancers. Recently, non-coding RNA (ncRNA), circulating tumor DNA (ctDNA)/ctRNA, exosomes, and metabolomic biomarkers in the liquid biopsies (LBs) of patients with PCa showed significant differences and clinical benefits in diagnosis, prognosis, and monitoring response to therapy. The analysis of urinary exosomal ncRNA presented a substantial correlation among Exos-miR-375 downregulation, clinical T stage, and bone metastases of PCa. Furthermore, the expression of miR-532-5p in urine samples was a vital predictive biomarker of PCa progression. Thus, this review focuses on promising molecular and metabolomic biomarkers in LBs from patients with PCa. We thoroughly addressed the most recent clinical findings of LB biomarker use in diagnosing and monitoring PCa in early and advanced stages.
期刊介绍:
Molecular Therapy — Oncolytics is an international, online-only, open access journal focusing on the development and clinical testing of viral, cellular, and other biological therapies targeting cancer.