Unexpected Slow Relaxation Dynamics in Pure Ring Polymers Arise from Intermolecular Interactions

IF 4.7 Q1 POLYMER SCIENCE ACS polymers Au Pub Date : 2023-03-30 DOI:10.1021/acspolymersau.2c00069
Michael Q. Tu, Oleg Davydovich, Baicheng Mei, Piyush K. Singh, Gary S. Grest, Kenneth S. Schweizer, Thomas C. O’Connor* and Charles M. Schroeder*, 
{"title":"Unexpected Slow Relaxation Dynamics in Pure Ring Polymers Arise from Intermolecular Interactions","authors":"Michael Q. Tu,&nbsp;Oleg Davydovich,&nbsp;Baicheng Mei,&nbsp;Piyush K. Singh,&nbsp;Gary S. Grest,&nbsp;Kenneth S. Schweizer,&nbsp;Thomas C. O’Connor* and Charles M. Schroeder*,&nbsp;","doi":"10.1021/acspolymersau.2c00069","DOIUrl":null,"url":null,"abstract":"<p >Ring polymers have fascinated scientists for decades, but experimental progress has been challenging due to the presence of linear chain contaminants that fundamentally alter dynamics. In this work, we report the unexpected slow stress relaxation behavior of concentrated ring polymers that arises due to ring–ring interactions and ring packing structure. Topologically pure, high molecular weight ring polymers are prepared without linear chain contaminants using cyclic poly(phthalaldehyde) (cPPA), a metastable polymer chemistry that rapidly depolymerizes from free ends at ambient temperatures. Linear viscoelastic measurements of highly concentrated cPPA show slow, non-power-law stress relaxation dynamics despite the lack of linear chain contaminants. Experiments are complemented by molecular dynamics (MD) simulations of unprecedentedly high molecular weight rings, which clearly show non-power-law stress relaxation in good agreement with experiments. MD simulations reveal substantial ring–ring interpenetrations upon increasing ring molecular weight or local backbone stiffness, despite the global collapsed nature of single ring conformation. A recently proposed microscopic theory for unconcatenated rings provides a qualitative physical mechanism associated with the emergence of strong inter-ring caging which slows down center-of-mass diffusion and long wavelength intramolecular relaxation modes originating from ring–ring interpenetrations, governed by the onset variable <i>N</i>/<i>N</i><sub>D</sub>, where the crossover degree of polymerization <i>N</i><sub>D</sub> is qualitatively predicted by theory. Our work overcomes challenges in achieving ring polymer purity and by characterizing dynamics for high molecular weight ring polymers. Overall, these results provide a new understanding of ring polymer physics.</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 4","pages":"307–317"},"PeriodicalIF":4.7000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7a/bc/lg2c00069.PMC10416323.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS polymers Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acspolymersau.2c00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 5

Abstract

Ring polymers have fascinated scientists for decades, but experimental progress has been challenging due to the presence of linear chain contaminants that fundamentally alter dynamics. In this work, we report the unexpected slow stress relaxation behavior of concentrated ring polymers that arises due to ring–ring interactions and ring packing structure. Topologically pure, high molecular weight ring polymers are prepared without linear chain contaminants using cyclic poly(phthalaldehyde) (cPPA), a metastable polymer chemistry that rapidly depolymerizes from free ends at ambient temperatures. Linear viscoelastic measurements of highly concentrated cPPA show slow, non-power-law stress relaxation dynamics despite the lack of linear chain contaminants. Experiments are complemented by molecular dynamics (MD) simulations of unprecedentedly high molecular weight rings, which clearly show non-power-law stress relaxation in good agreement with experiments. MD simulations reveal substantial ring–ring interpenetrations upon increasing ring molecular weight or local backbone stiffness, despite the global collapsed nature of single ring conformation. A recently proposed microscopic theory for unconcatenated rings provides a qualitative physical mechanism associated with the emergence of strong inter-ring caging which slows down center-of-mass diffusion and long wavelength intramolecular relaxation modes originating from ring–ring interpenetrations, governed by the onset variable N/ND, where the crossover degree of polymerization ND is qualitatively predicted by theory. Our work overcomes challenges in achieving ring polymer purity and by characterizing dynamics for high molecular weight ring polymers. Overall, these results provide a new understanding of ring polymer physics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分子间相互作用引起的纯环聚合物中出乎意料的慢弛豫动力学
几十年来,环状聚合物一直吸引着科学家,但由于存在从根本上改变动力学的线性链污染物,实验进展一直具有挑战性。在这项工作中,我们报道了由于环-环相互作用和环填充结构而产生的浓缩环聚合物的出乎意料的缓慢应力松弛行为。使用环状聚(邻苯二甲醛)(cPPA)制备拓扑纯的高分子量环聚合物,没有线性链污染物,这是一种亚稳态聚合物化学物质,在环境温度下从自由端快速解聚。高浓度cPPA的线性粘弹性测量显示出缓慢的非幂律应力松弛动力学,尽管缺乏线性链污染物。实验得到了前所未有的高分子量环的分子动力学(MD)模拟的补充,这些模拟清楚地表明了非幂律应力松弛与实验非常一致。MD模拟揭示了在增加环分子量或局部骨架刚度时,尽管单环构象具有全局坍塌性质,但环-环的实质相互渗透。最近提出的一种非连接环的微观理论提供了一种与强环间笼化的出现相关的定性物理机制,该机制减缓了源自环-环互穿的质心扩散和长波长分子内弛豫模式,由起始变量N/ND控制,其中通过理论定性地预测聚合的交叉度ND。我们的工作克服了实现环聚合物纯度和表征高分子量环聚合物动力学方面的挑战。总的来说,这些结果为环聚合物物理提供了新的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
期刊最新文献
Issue Editorial Masthead Issue Publication Information Design of Highly Conductive PILs by Simple Modification of Poly(epichlorohydrin-co-ethylene oxide) with Monosubstituted Imidazoles Issue Publication Information Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1