Mohammad Rostami, Farnaz Faridi, Reza Khosrowabadi
{"title":"基于脑电图的ADHD智力评分的脑功能相关性研究。","authors":"Mohammad Rostami, Farnaz Faridi, Reza Khosrowabadi","doi":"10.32598/bcn.2021.1904.1","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>It has been shown that intelligence as a general mental ability is related to the structure and function of the brain regions. However, the specificity of these regional dependencies to the intelligence scores in the typical and atypical developed individuals needs to be well understood. In this study, we hypothesized that neural correlates of IQ should not have a fixed pattern rather they must follow a dynamic pattern to compensate for the functional deficits caused by a neurodevelopmental disorder. Therefore, electroencephalography (EEG) correlates of normal IQ in various subtypes of attention deficit hyperactive disorder (ADHD) were compared with a group of healthy controls.</p><p><strong>Methods: </strong>Sixty-three ADHD subjects comprising combined, inattentive, and hyperactive individuals diagnosed by a psychiatrist using structural clinical interview for DSM-V, and 46 healthy controls with similar normal IQ scores were recruited in this study. The subjects' EEG data were then recorded during an eye-closed resting condition. The subjects' intelligence level was measured by Raven's standard progressive matrices. Then, the association between IQ and the power of the EEG signal was computed in the conventional frequency bands. Subsequently, topographical representations of these associations were compared between the groups.</p><p><strong>Results: </strong>Our results demonstrated that the association between IQ score and EEG power is not the same in various ADHD subtypes and healthy controls.</p><p><strong>Conclusion: </strong>This finding suggests a compensatory mechanism in ADHD individuals for changing the regional oscillatory pattern to maintain the IQ within a normal range.</p>","PeriodicalId":8701,"journal":{"name":"Basic and Clinical Neuroscience","volume":"13 6","pages":"883-900"},"PeriodicalIF":1.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/83/94/BCN-13-883.PMC10262280.pdf","citationCount":"0","resultStr":"{\"title\":\"Brain Functional Correlates of Intelligence Score in ADHD Based on EEG.\",\"authors\":\"Mohammad Rostami, Farnaz Faridi, Reza Khosrowabadi\",\"doi\":\"10.32598/bcn.2021.1904.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>It has been shown that intelligence as a general mental ability is related to the structure and function of the brain regions. However, the specificity of these regional dependencies to the intelligence scores in the typical and atypical developed individuals needs to be well understood. In this study, we hypothesized that neural correlates of IQ should not have a fixed pattern rather they must follow a dynamic pattern to compensate for the functional deficits caused by a neurodevelopmental disorder. Therefore, electroencephalography (EEG) correlates of normal IQ in various subtypes of attention deficit hyperactive disorder (ADHD) were compared with a group of healthy controls.</p><p><strong>Methods: </strong>Sixty-three ADHD subjects comprising combined, inattentive, and hyperactive individuals diagnosed by a psychiatrist using structural clinical interview for DSM-V, and 46 healthy controls with similar normal IQ scores were recruited in this study. The subjects' EEG data were then recorded during an eye-closed resting condition. The subjects' intelligence level was measured by Raven's standard progressive matrices. Then, the association between IQ and the power of the EEG signal was computed in the conventional frequency bands. Subsequently, topographical representations of these associations were compared between the groups.</p><p><strong>Results: </strong>Our results demonstrated that the association between IQ score and EEG power is not the same in various ADHD subtypes and healthy controls.</p><p><strong>Conclusion: </strong>This finding suggests a compensatory mechanism in ADHD individuals for changing the regional oscillatory pattern to maintain the IQ within a normal range.</p>\",\"PeriodicalId\":8701,\"journal\":{\"name\":\"Basic and Clinical Neuroscience\",\"volume\":\"13 6\",\"pages\":\"883-900\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/83/94/BCN-13-883.PMC10262280.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Basic and Clinical Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32598/bcn.2021.1904.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Basic and Clinical Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32598/bcn.2021.1904.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Brain Functional Correlates of Intelligence Score in ADHD Based on EEG.
Introduction: It has been shown that intelligence as a general mental ability is related to the structure and function of the brain regions. However, the specificity of these regional dependencies to the intelligence scores in the typical and atypical developed individuals needs to be well understood. In this study, we hypothesized that neural correlates of IQ should not have a fixed pattern rather they must follow a dynamic pattern to compensate for the functional deficits caused by a neurodevelopmental disorder. Therefore, electroencephalography (EEG) correlates of normal IQ in various subtypes of attention deficit hyperactive disorder (ADHD) were compared with a group of healthy controls.
Methods: Sixty-three ADHD subjects comprising combined, inattentive, and hyperactive individuals diagnosed by a psychiatrist using structural clinical interview for DSM-V, and 46 healthy controls with similar normal IQ scores were recruited in this study. The subjects' EEG data were then recorded during an eye-closed resting condition. The subjects' intelligence level was measured by Raven's standard progressive matrices. Then, the association between IQ and the power of the EEG signal was computed in the conventional frequency bands. Subsequently, topographical representations of these associations were compared between the groups.
Results: Our results demonstrated that the association between IQ score and EEG power is not the same in various ADHD subtypes and healthy controls.
Conclusion: This finding suggests a compensatory mechanism in ADHD individuals for changing the regional oscillatory pattern to maintain the IQ within a normal range.
期刊介绍:
BCN is an international multidisciplinary journal that publishes editorials, original full-length research articles, short communications, reviews, methodological papers, commentaries, perspectives and “news and reports” in the broad fields of developmental, molecular, cellular, system, computational, behavioral, cognitive, and clinical neuroscience. No area in the neural related sciences is excluded from consideration, although priority is given to studies that provide applied insights into the functioning of the nervous system. BCN aims to advance our understanding of organization and function of the nervous system in health and disease, thereby improving the diagnosis and treatment of neural-related disorders. Manuscripts submitted to BCN should describe novel results generated by experiments that were guided by clearly defined aims or hypotheses. BCN aims to provide serious ties in interdisciplinary communication, accessibility to a broad readership inside Iran and the region and also in all other international academic sites, effective peer review process, and independence from all possible non-scientific interests. BCN also tries to empower national, regional and international collaborative networks in the field of neuroscience in Iran, Middle East, Central Asia and North Africa and to be the voice of the Iranian and regional neuroscience community in the world of neuroscientists. In this way, the journal encourages submission of editorials, review papers, commentaries, methodological notes and perspectives that address this scope.