Piotr Świątek , Rojen Singh Thounaojam , Th. Binoy Singh , Samuel James , Łukasz Gajda , Karol Małota , Dominika Raś , Anna Z. Urbisz
{"title":"六种Amenthas和Metaphire蚯蚓(环节动物门、Crassiclitellata和Megascolecidae)的卵巢组织和超微结构。","authors":"Piotr Świątek , Rojen Singh Thounaojam , Th. Binoy Singh , Samuel James , Łukasz Gajda , Karol Małota , Dominika Raś , Anna Z. Urbisz","doi":"10.1016/j.zool.2023.126109","DOIUrl":null,"url":null,"abstract":"<div><p>Ovaries in earthworms belonging to the family Megascolecidae are paired structures attached to the septum in the anterior part of the XIII segment. They are fan to rosette shaped with numerous rows of growing oocytes, known as egg strings, radiating from the ovary center towards the segmental cavity. The histological and ultrastructural ovary organization in megascolecids and the course of oogenesis remain unknown. The paper presents the results of light and electron microscopy analyses of ovaries in six megascolecid species, three from the genus <em>Amynthas</em> and three from <em>Metaphire</em>. Both parthenogenetic and sexually reproducing species were included in the study. The organization and ultrastructure of ovaries in all studied species are broadly similar. Considering the histological organization of ovaries, they could be divided into two zones. Zone I (proximal, close to the connection with the septum) is tightly packed with germline and somatic cells. Germ cells are interconnected via intercellular bridges and thin strands of the central cytoplasm (known as cytophore) and form syncytial cysts. Cysts unite oogonia, early meiotic cells (till diplotene), and clustering cells develop synchronously. During diplotene, interconnected cells lose developmental synchrony; most probably, one cell per cyst grows faster than others, detaches from the cysts, and becomes an oocyte. The remaining cells grow slightly and are still interconnected via the thin and reticular cytophore; these cells are considered nurse cells. Zone II has a form of egg strings where growing oocytes are isolated one from another by thin somatic cells and form short cords. We present the ultrastructural details of germline and somatic cells. We propose the term \"Amynthas\" type of ovaries for this ovary organization. We suppose that such ovaries are characteristic of other megascolecids and related families.</p></div>","PeriodicalId":49330,"journal":{"name":"Zoology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ovary organization and ultrastructure in six species of Amynthas and Metaphire earthworms (Annelida, Crassiclitellata, Megascolecidae)\",\"authors\":\"Piotr Świątek , Rojen Singh Thounaojam , Th. Binoy Singh , Samuel James , Łukasz Gajda , Karol Małota , Dominika Raś , Anna Z. Urbisz\",\"doi\":\"10.1016/j.zool.2023.126109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ovaries in earthworms belonging to the family Megascolecidae are paired structures attached to the septum in the anterior part of the XIII segment. They are fan to rosette shaped with numerous rows of growing oocytes, known as egg strings, radiating from the ovary center towards the segmental cavity. The histological and ultrastructural ovary organization in megascolecids and the course of oogenesis remain unknown. The paper presents the results of light and electron microscopy analyses of ovaries in six megascolecid species, three from the genus <em>Amynthas</em> and three from <em>Metaphire</em>. Both parthenogenetic and sexually reproducing species were included in the study. The organization and ultrastructure of ovaries in all studied species are broadly similar. Considering the histological organization of ovaries, they could be divided into two zones. Zone I (proximal, close to the connection with the septum) is tightly packed with germline and somatic cells. Germ cells are interconnected via intercellular bridges and thin strands of the central cytoplasm (known as cytophore) and form syncytial cysts. Cysts unite oogonia, early meiotic cells (till diplotene), and clustering cells develop synchronously. During diplotene, interconnected cells lose developmental synchrony; most probably, one cell per cyst grows faster than others, detaches from the cysts, and becomes an oocyte. The remaining cells grow slightly and are still interconnected via the thin and reticular cytophore; these cells are considered nurse cells. Zone II has a form of egg strings where growing oocytes are isolated one from another by thin somatic cells and form short cords. We present the ultrastructural details of germline and somatic cells. We propose the term \\\"Amynthas\\\" type of ovaries for this ovary organization. We suppose that such ovaries are characteristic of other megascolecids and related families.</p></div>\",\"PeriodicalId\":49330,\"journal\":{\"name\":\"Zoology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0944200623000430\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944200623000430","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
Ovary organization and ultrastructure in six species of Amynthas and Metaphire earthworms (Annelida, Crassiclitellata, Megascolecidae)
Ovaries in earthworms belonging to the family Megascolecidae are paired structures attached to the septum in the anterior part of the XIII segment. They are fan to rosette shaped with numerous rows of growing oocytes, known as egg strings, radiating from the ovary center towards the segmental cavity. The histological and ultrastructural ovary organization in megascolecids and the course of oogenesis remain unknown. The paper presents the results of light and electron microscopy analyses of ovaries in six megascolecid species, three from the genus Amynthas and three from Metaphire. Both parthenogenetic and sexually reproducing species were included in the study. The organization and ultrastructure of ovaries in all studied species are broadly similar. Considering the histological organization of ovaries, they could be divided into two zones. Zone I (proximal, close to the connection with the septum) is tightly packed with germline and somatic cells. Germ cells are interconnected via intercellular bridges and thin strands of the central cytoplasm (known as cytophore) and form syncytial cysts. Cysts unite oogonia, early meiotic cells (till diplotene), and clustering cells develop synchronously. During diplotene, interconnected cells lose developmental synchrony; most probably, one cell per cyst grows faster than others, detaches from the cysts, and becomes an oocyte. The remaining cells grow slightly and are still interconnected via the thin and reticular cytophore; these cells are considered nurse cells. Zone II has a form of egg strings where growing oocytes are isolated one from another by thin somatic cells and form short cords. We present the ultrastructural details of germline and somatic cells. We propose the term "Amynthas" type of ovaries for this ovary organization. We suppose that such ovaries are characteristic of other megascolecids and related families.
期刊介绍:
Zoology is a journal devoted to experimental and comparative animal science. It presents a common forum for all scientists who take an explicitly organism oriented and integrative approach to the study of animal form, function, development and evolution.
The journal invites papers that take a comparative or experimental approach to behavior and neurobiology, functional morphology, evolution and development, ecological physiology, and cell biology. Due to the increasing realization that animals exist only within a partnership with symbionts, Zoology encourages submissions of papers focused on the analysis of holobionts or metaorganisms as associations of the macroscopic host in synergistic interdependence with numerous microbial and eukaryotic species.
The editors and the editorial board are committed to presenting science at its best. The editorial team is regularly adjusting editorial practice to the ever changing field of animal biology.