{"title":"FNDC5减轻ApoE-/-小鼠动脉粥样硬化斑块的形成并调节PPARα/HO-1。","authors":"Bo Zhou, Xiang Wang, Yao Wang, Danan Liu","doi":"10.1159/000531585","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>This study attempted to observe the role of fibronectin type III domain-containing protein 5 (FNDC5) in atherosclerosis development and the underlying mechanism.</p><p><strong>Methods: </strong>After being fed a high-fat diet (HFD), ApoE-/- mice were injected with saline, control adenovirus (Ad-vector), or FNDC5 overexpressing adenovirus (Ad-FNDC5). ApoE-/- mice fed with a chow diet were considered the control. After 12 weeks of treatment, the levels of serum high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), and irisin were detected by commercial kits.</p><p><strong>Results: </strong>Compared with the control, the serum TG, TC, and LDL-C levels, aortic plaque area, and weight were significantly increased, while serum HDL-C and irisin levels were reduced in HFD mice. Treating with Ad-FNDC5 could alleviate these changes in HFD mice and cause the activation of PPARα/HO-1 signaling in aortic tissue. After co-treating with GW6471, a PPARα antagonist, the effects of Ad-FNDC5 on the weight, serum LDL-C, TC, TG, and HDL-C levels, and aortic plaque of HFD mice were partly blocked.</p><p><strong>Conclusion: </strong>Elevated FNDC5 has a delaying effect on atherosclerotic plaque formation, which may be related to the upregulation of PPARα/HO-1 signaling.</p>","PeriodicalId":17530,"journal":{"name":"Journal of Vascular Research","volume":" ","pages":"172-182"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FNDC5 Attenuates Atherosclerotic Plaque Formation and Regulates PPARα/HO-1 in ApoE-/- Mice.\",\"authors\":\"Bo Zhou, Xiang Wang, Yao Wang, Danan Liu\",\"doi\":\"10.1159/000531585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>This study attempted to observe the role of fibronectin type III domain-containing protein 5 (FNDC5) in atherosclerosis development and the underlying mechanism.</p><p><strong>Methods: </strong>After being fed a high-fat diet (HFD), ApoE-/- mice were injected with saline, control adenovirus (Ad-vector), or FNDC5 overexpressing adenovirus (Ad-FNDC5). ApoE-/- mice fed with a chow diet were considered the control. After 12 weeks of treatment, the levels of serum high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), and irisin were detected by commercial kits.</p><p><strong>Results: </strong>Compared with the control, the serum TG, TC, and LDL-C levels, aortic plaque area, and weight were significantly increased, while serum HDL-C and irisin levels were reduced in HFD mice. Treating with Ad-FNDC5 could alleviate these changes in HFD mice and cause the activation of PPARα/HO-1 signaling in aortic tissue. After co-treating with GW6471, a PPARα antagonist, the effects of Ad-FNDC5 on the weight, serum LDL-C, TC, TG, and HDL-C levels, and aortic plaque of HFD mice were partly blocked.</p><p><strong>Conclusion: </strong>Elevated FNDC5 has a delaying effect on atherosclerotic plaque formation, which may be related to the upregulation of PPARα/HO-1 signaling.</p>\",\"PeriodicalId\":17530,\"journal\":{\"name\":\"Journal of Vascular Research\",\"volume\":\" \",\"pages\":\"172-182\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vascular Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000531585\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PERIPHERAL VASCULAR DISEASE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vascular Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000531585","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
FNDC5 Attenuates Atherosclerotic Plaque Formation and Regulates PPARα/HO-1 in ApoE-/- Mice.
Introduction: This study attempted to observe the role of fibronectin type III domain-containing protein 5 (FNDC5) in atherosclerosis development and the underlying mechanism.
Methods: After being fed a high-fat diet (HFD), ApoE-/- mice were injected with saline, control adenovirus (Ad-vector), or FNDC5 overexpressing adenovirus (Ad-FNDC5). ApoE-/- mice fed with a chow diet were considered the control. After 12 weeks of treatment, the levels of serum high-density lipoprotein cholesterol (HDL-C), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), and irisin were detected by commercial kits.
Results: Compared with the control, the serum TG, TC, and LDL-C levels, aortic plaque area, and weight were significantly increased, while serum HDL-C and irisin levels were reduced in HFD mice. Treating with Ad-FNDC5 could alleviate these changes in HFD mice and cause the activation of PPARα/HO-1 signaling in aortic tissue. After co-treating with GW6471, a PPARα antagonist, the effects of Ad-FNDC5 on the weight, serum LDL-C, TC, TG, and HDL-C levels, and aortic plaque of HFD mice were partly blocked.
Conclusion: Elevated FNDC5 has a delaying effect on atherosclerotic plaque formation, which may be related to the upregulation of PPARα/HO-1 signaling.
期刊介绍:
The ''Journal of Vascular Research'' publishes original articles and reviews of scientific excellence in vascular and microvascular biology, physiology and pathophysiology. The scope of the journal covers a broad spectrum of vascular and lymphatic research, including vascular structure, vascular function, haemodynamics, mechanics, cell signalling, intercellular communication, growth and differentiation. JVR''s ''Vascular Update'' series regularly presents state-of-the-art reviews on hot topics in vascular biology. Manuscript processing times are, consistent with stringent review, kept as short as possible due to electronic submission. All articles are published online first, ensuring rapid publication. The ''Journal of Vascular Research'' is the official journal of the European Society for Microcirculation. A biennial prize is awarded to the authors of the best paper published in the journal over the previous two years, thus encouraging young scientists working in the exciting field of vascular biology to publish their findings.