{"title":"核酸编辑在人畜共患病毒适应人类中的作用","authors":"Jeremy Ratcliff , Peter Simmonds","doi":"10.1016/j.coviro.2023.101326","DOIUrl":null,"url":null,"abstract":"<div><p>Following spillover, viruses must adapt to new selection pressures exerted by antiviral responses in their new hosts. In mammals, cellular defense mechanisms often include viral nucleic acid editing pathways mediated through protein families apolipoprotein-B mRNA-editing complex (APOBEC) and Adenosine Deaminase Acting on ribonucleic acid (ADAR). APOBECs induce C→U transitions in viral genomes; the APOBEC locus is highly polymorphic with variable numbers of APOBEC3 paralogs and target preferences in humans and other mammals. APOBEC3 paralogs have shaped the evolutionary history of human immunodeficiency virus, with compelling bioinformatic evidence also for its mutagenic impact on monkeypox virus and severe acute respiratory syndrome coronavirus 2. ADAR-1 induces adenose-to-inosine (A→I) substitutions in double-stranded ribonucleic acid (RNA); its role in virus adaptation is less clear, as are epigenetic modifications to viral genomes, such as methylation. Nucleic acid editing restricts evolutionary space in which viruses can explore and may restrict viral-host range.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"60 ","pages":"Article 101326"},"PeriodicalIF":5.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155873/pdf/","citationCount":"0","resultStr":"{\"title\":\"The roles of nucleic acid editing in adaptation of zoonotic viruses to humans\",\"authors\":\"Jeremy Ratcliff , Peter Simmonds\",\"doi\":\"10.1016/j.coviro.2023.101326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Following spillover, viruses must adapt to new selection pressures exerted by antiviral responses in their new hosts. In mammals, cellular defense mechanisms often include viral nucleic acid editing pathways mediated through protein families apolipoprotein-B mRNA-editing complex (APOBEC) and Adenosine Deaminase Acting on ribonucleic acid (ADAR). APOBECs induce C→U transitions in viral genomes; the APOBEC locus is highly polymorphic with variable numbers of APOBEC3 paralogs and target preferences in humans and other mammals. APOBEC3 paralogs have shaped the evolutionary history of human immunodeficiency virus, with compelling bioinformatic evidence also for its mutagenic impact on monkeypox virus and severe acute respiratory syndrome coronavirus 2. ADAR-1 induces adenose-to-inosine (A→I) substitutions in double-stranded ribonucleic acid (RNA); its role in virus adaptation is less clear, as are epigenetic modifications to viral genomes, such as methylation. Nucleic acid editing restricts evolutionary space in which viruses can explore and may restrict viral-host range.</p></div>\",\"PeriodicalId\":11082,\"journal\":{\"name\":\"Current opinion in virology\",\"volume\":\"60 \",\"pages\":\"Article 101326\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10155873/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current opinion in virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1879625723000263\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in virology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1879625723000263","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
The roles of nucleic acid editing in adaptation of zoonotic viruses to humans
Following spillover, viruses must adapt to new selection pressures exerted by antiviral responses in their new hosts. In mammals, cellular defense mechanisms often include viral nucleic acid editing pathways mediated through protein families apolipoprotein-B mRNA-editing complex (APOBEC) and Adenosine Deaminase Acting on ribonucleic acid (ADAR). APOBECs induce C→U transitions in viral genomes; the APOBEC locus is highly polymorphic with variable numbers of APOBEC3 paralogs and target preferences in humans and other mammals. APOBEC3 paralogs have shaped the evolutionary history of human immunodeficiency virus, with compelling bioinformatic evidence also for its mutagenic impact on monkeypox virus and severe acute respiratory syndrome coronavirus 2. ADAR-1 induces adenose-to-inosine (A→I) substitutions in double-stranded ribonucleic acid (RNA); its role in virus adaptation is less clear, as are epigenetic modifications to viral genomes, such as methylation. Nucleic acid editing restricts evolutionary space in which viruses can explore and may restrict viral-host range.
期刊介绍:
Current Opinion in Virology (COVIRO) is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up to date with the expanding volume of information published in the field of virology. It publishes 6 issues per year covering the following 11 sections, each of which is reviewed once a year: Emerging viruses: interspecies transmission; Viral immunology; Viral pathogenesis; Preventive and therapeutic vaccines; Antiviral strategies; Virus structure and expression; Animal models for viral diseases; Engineering for viral resistance; Viruses and cancer; Virus vector interactions. There is also a section that changes every year to reflect hot topics in the field.