Pub Date : 2024-11-12DOI: 10.1016/j.coviro.2024.101436
Grace Hood, Miles Carroll
This paper provides an overview of the phenomena of cross-species transmission of viruses (known as spillover), focusing on the highly pathogenic filovirus family and their natural reservoir: bats. It also describes the host-pathogen relationship of viruses and their reservoirs, in addition to humans, and discusses current theories of persistent infection.
{"title":"Host-pathogen interactions of emerging zoonotic viruses: bats, humans and filoviruses.","authors":"Grace Hood, Miles Carroll","doi":"10.1016/j.coviro.2024.101436","DOIUrl":"https://doi.org/10.1016/j.coviro.2024.101436","url":null,"abstract":"<p><p>This paper provides an overview of the phenomena of cross-species transmission of viruses (known as spillover), focusing on the highly pathogenic filovirus family and their natural reservoir: bats. It also describes the host-pathogen relationship of viruses and their reservoirs, in addition to humans, and discusses current theories of persistent infection.</p>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":" ","pages":"101436"},"PeriodicalIF":5.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1016/j.coviro.2024.101437
Dominic Obraitis, Dawei Li
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with a complex clinical presentation and an unknown etiology. Various viral infections have been proposed as potential triggers of ME/CFS onset, but no specific pathogen has been identified in all cases of postinfectious ME/CFS. The symptomatology of the postacute sequelae of SARS-CoV-2, or long COVID, mirrors that of ME/CFS, with nearly half of long COVID patients meeting ME/CFS diagnostic criteria. The influx of newly diagnosed patients has reinvigorated interest in ME/CFS pathogenesis research, with an emphasis on viral triggers. This review summarizes the current understanding of ME/CFS research on viral triggers, including blood virome screening studies. To further elucidate the molecular basis of ME/CFS, there is a need to develop innovative bioinformatics tools capable of analyzing complex virome data and integrating multiomics information.
{"title":"Blood virome research in myalgic encephalomyelitis/chronic fatigue syndrome: challenges and opportunities.","authors":"Dominic Obraitis, Dawei Li","doi":"10.1016/j.coviro.2024.101437","DOIUrl":"https://doi.org/10.1016/j.coviro.2024.101437","url":null,"abstract":"<p><p>Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with a complex clinical presentation and an unknown etiology. Various viral infections have been proposed as potential triggers of ME/CFS onset, but no specific pathogen has been identified in all cases of postinfectious ME/CFS. The symptomatology of the postacute sequelae of SARS-CoV-2, or long COVID, mirrors that of ME/CFS, with nearly half of long COVID patients meeting ME/CFS diagnostic criteria. The influx of newly diagnosed patients has reinvigorated interest in ME/CFS pathogenesis research, with an emphasis on viral triggers. This review summarizes the current understanding of ME/CFS research on viral triggers, including blood virome screening studies. To further elucidate the molecular basis of ME/CFS, there is a need to develop innovative bioinformatics tools capable of analyzing complex virome data and integrating multiomics information.</p>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":" ","pages":"101437"},"PeriodicalIF":5.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142615435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-14DOI: 10.1016/j.coviro.2024.101435
Meaghan Flagg, Emmie de Wit
Zoonotic viruses with the ability to replicate in the human respiratory tract pose a threat to public health. Organoids, which are highly representative, multicellular models representing specific organs or tissues, can aid in our understanding of the pathogenesis, pathogenicity, transmissibility, and reservoir circulation dynamics of zoonotic viruses. Organoid studies can facilitate the rapid selection of antiviral therapies identification of potential reservoir species and intermediate hosts, and inform the selection of suitable laboratory animal models. We review the use of human- and animal-derived organoid models from multiple organs to investigate the threat of emerging zoonotic viruses that cause respiratory disease.
{"title":"Advancing zoonotic respiratory virus research through the use of organoids.","authors":"Meaghan Flagg, Emmie de Wit","doi":"10.1016/j.coviro.2024.101435","DOIUrl":"https://doi.org/10.1016/j.coviro.2024.101435","url":null,"abstract":"<p><p>Zoonotic viruses with the ability to replicate in the human respiratory tract pose a threat to public health. Organoids, which are highly representative, multicellular models representing specific organs or tissues, can aid in our understanding of the pathogenesis, pathogenicity, transmissibility, and reservoir circulation dynamics of zoonotic viruses. Organoid studies can facilitate the rapid selection of antiviral therapies identification of potential reservoir species and intermediate hosts, and inform the selection of suitable laboratory animal models. We review the use of human- and animal-derived organoid models from multiple organs to investigate the threat of emerging zoonotic viruses that cause respiratory disease.</p>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":" ","pages":"101435"},"PeriodicalIF":5.7,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.coviro.2024.101428
Seth D Judson , David W Dowdy
The 2013–2016 Ebola virus disease epidemic and the coronavirus disease 2019 pandemic galvanized tremendous growth in models for emerging zoonotic and vector-borne viruses. Therefore, we have reviewed the main goals and methods of models to guide scientists and decision-makers. The elements of models for emerging viruses vary across spectrums: from understanding the past to forecasting the future, using data across space and time, and using statistical versus mechanistic methods. Hybrid/ensemble models and artificial intelligence offer new opportunities for modeling. Despite this progress, challenges remain in translating models into actionable decisions, particularly in areas at highest risk for viral disease outbreaks. To address this issue, we must identify gaps in models for specific viruses, strengthen validation, and involve policymakers in model development.
{"title":"Modeling zoonotic and vector-borne viruses","authors":"Seth D Judson , David W Dowdy","doi":"10.1016/j.coviro.2024.101428","DOIUrl":"10.1016/j.coviro.2024.101428","url":null,"abstract":"<div><p>The 2013–2016 Ebola virus disease epidemic and the coronavirus disease 2019 pandemic galvanized tremendous growth in models for emerging zoonotic and vector-borne viruses. Therefore, we have reviewed the main goals and methods of models to guide scientists and decision-makers. The elements of models for emerging viruses vary across spectrums: from understanding the past to forecasting the future, using data across space and time, and using statistical versus mechanistic methods. Hybrid/ensemble models and artificial intelligence offer new opportunities for modeling. Despite this progress, challenges remain in translating models into actionable decisions, particularly in areas at highest risk for viral disease outbreaks. To address this issue, we must identify gaps in models for specific viruses, strengthen validation, and involve policymakers in model development.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"67 ","pages":"Article 101428"},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-01DOI: 10.1016/j.coviro.2024.101427
Rachael Tarlinton , Alex D Greenwood
The koala retrovirus, KoRV, is one of the few models for understanding the health consequences of retroviral colonization of the germline. Such colonization events transition exogenous infectious retroviruses to Mendelian traits or endogenous retroviruses (ERVs). KoRV is currently in a transitional state from exogenous retrovirus to ERV, which in koalas (Phascolarctos cinereus) has been associated with strongly elevated levels of neoplasia. In this review, we describe what is currently known about the associations and underlying mechanisms of KoRV-induced neoplasia.
{"title":"Koala retrovirus and neoplasia: correlation and underlying mechanisms","authors":"Rachael Tarlinton , Alex D Greenwood","doi":"10.1016/j.coviro.2024.101427","DOIUrl":"10.1016/j.coviro.2024.101427","url":null,"abstract":"<div><p>The koala retrovirus, KoRV, is one of the few models for understanding the health consequences of retroviral colonization of the germline. Such colonization events transition exogenous infectious retroviruses to Mendelian traits or endogenous retroviruses (ERVs). KoRV is currently in a transitional state from exogenous retrovirus to ERV, which in koalas (<em>Phascolarctos cinereus</em>) has been associated with strongly elevated levels of neoplasia. In this review, we describe what is currently known about the associations and underlying mechanisms of KoRV-induced neoplasia.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"67 ","pages":"Article 101427"},"PeriodicalIF":5.7,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1879625724000415/pdfft?md5=bba961f7634963ba70a265cff18eb273&pid=1-s2.0-S1879625724000415-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141757706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.1016/j.coviro.2024.101424
Hafiz S Zafar, Haji Akbar, Huai Xu, Nagendraprabhu Ponnuraj, Kathrine Van Etten, Keith W Jarosinski
Oncogenic viruses play a pivotal role in oncology due to their unique role in unraveling the complexities of cancer development. Understanding the role viruses play in specific cancers is important to provide basic insights into the transformation process, which will help identify potential cellular targets for treatment. This review discusses the diverse role of animal herpesviruses in initiating and promoting various forms of cancer. We will summarize the mechanisms that underlie the development of animal herpesvirus-induced cancer that may provide a basis for developing potential therapeutic interventions or preventative strategies in the future.
{"title":"Oncogenic Animal Herpesviruses","authors":"Hafiz S Zafar, Haji Akbar, Huai Xu, Nagendraprabhu Ponnuraj, Kathrine Van Etten, Keith W Jarosinski","doi":"10.1016/j.coviro.2024.101424","DOIUrl":"10.1016/j.coviro.2024.101424","url":null,"abstract":"<div><p>Oncogenic viruses play a pivotal role in oncology due to their unique role in unraveling the complexities of cancer development. Understanding the role viruses play in specific cancers is important to provide basic insights into the transformation process, which will help identify potential cellular targets for treatment. This review discusses the diverse role of animal herpesviruses in initiating and promoting various forms of cancer. We will summarize the mechanisms that underlie the development of animal herpesvirus-induced cancer that may provide a basis for developing potential therapeutic interventions or preventative strategies in the future.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"67 ","pages":"Article 101424"},"PeriodicalIF":5.7,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1879625724000385/pdfft?md5=460ef9b7ee0a9c7441f319bf9e3deda3&pid=1-s2.0-S1879625724000385-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-27DOI: 10.1016/j.coviro.2024.101425
Jean-Michel Sallenave , Zhou Xing
{"title":"Editorial overview: The lung, the gut, and the genital mucosae: microbial targets and therapeutic playgrounds","authors":"Jean-Michel Sallenave , Zhou Xing","doi":"10.1016/j.coviro.2024.101425","DOIUrl":"10.1016/j.coviro.2024.101425","url":null,"abstract":"","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"67 ","pages":"Article 101425"},"PeriodicalIF":5.7,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141466834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-25DOI: 10.1016/j.coviro.2024.101423
Felix Fiehn , Claudia Beisel , Marco Binder
Chronic hepatitis C virus (HCV) infection is a major cause of hepatic fibrosis and cirrhosis, with a risk for the development of hepatocellular carcinoma (HCC). Although highly effective direct-acting antivirals (DAAs) are available, the incidence, morbidity, and mortality of HCV-associated HCC are still high. This article reviews the current knowledge of the mechanisms of HCV-induced carcinogenesis with a special focus on those processes that continue after virus clearance and outlines implications for patient surveillance after DAA treatment.
{"title":"Hepatitis C virus and hepatocellular carcinoma: carcinogenesis in the era of direct-acting antivirals","authors":"Felix Fiehn , Claudia Beisel , Marco Binder","doi":"10.1016/j.coviro.2024.101423","DOIUrl":"10.1016/j.coviro.2024.101423","url":null,"abstract":"<div><p>Chronic hepatitis C virus (HCV) infection is a major cause of hepatic fibrosis and cirrhosis, with a risk for the development of hepatocellular carcinoma (HCC). Although highly effective direct-acting antivirals (DAAs) are available, the incidence, morbidity, and mortality of HCV-associated HCC are still high. This article reviews the current knowledge of the mechanisms of HCV-induced carcinogenesis with a special focus on those processes that continue after virus clearance and outlines implications for patient surveillance after DAA treatment.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"67 ","pages":"Article 101423"},"PeriodicalIF":5.7,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1879625724000373/pdfft?md5=b876ef78dbae9ae549ed962138355e88&pid=1-s2.0-S1879625724000373-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141455789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-11DOI: 10.1016/j.coviro.2024.101413
Luca D Bertzbach , Wing-Hang Ip , Konstantin von Stromberg , Thomas Dobner , Roger J Grand
Oncogenic viruses contribute to 15% of global human cancers. To achieve that, virus-encoded oncoproteins deregulate cellular transcription, antagonize common cellular pathways, and thus drive cell transformation. Notably, adenoviruses were the first human viruses proven to induce cancers in diverse animal models. Over the past decades, human adenovirus (HAdV)-mediated oncogenic transformation has been pivotal in deciphering underlying molecular mechanisms. Key adenovirus oncoproteins, encoded in early regions 1 (E1) and 4 (E4), co-ordinate these processes. Among the different adenovirus species, the most extensively studied HAdV-C5 displays lower oncogenicity than HAdV-A12. A complete understanding of the different HAdV-A12 and HAdV-C5 oncoproteins in virus-mediated cell transformation, as summarized here, is relevant for adenovirus research and offers broader insights into viral transformation and oncogenesis.
{"title":"A comparative review of adenovirus A12 and C5 oncogenes","authors":"Luca D Bertzbach , Wing-Hang Ip , Konstantin von Stromberg , Thomas Dobner , Roger J Grand","doi":"10.1016/j.coviro.2024.101413","DOIUrl":"10.1016/j.coviro.2024.101413","url":null,"abstract":"<div><p>Oncogenic viruses contribute to 15% of global human cancers. To achieve that, virus-encoded oncoproteins deregulate cellular transcription, antagonize common cellular pathways, and thus drive cell transformation. Notably, adenoviruses were the first human viruses proven to induce cancers in diverse animal models. Over the past decades, human adenovirus (HAdV)-mediated oncogenic transformation has been pivotal in deciphering underlying molecular mechanisms. Key adenovirus oncoproteins, encoded in early regions 1 (E1) and 4 (E4), co-ordinate these processes. Among the different adenovirus species, the most extensively studied HAdV-C5 displays lower oncogenicity than HAdV-A12. A complete understanding of the different HAdV-A12 and HAdV-C5 oncoproteins in virus-mediated cell transformation, as summarized here, is relevant for adenovirus research and offers broader insights into viral transformation and oncogenesis.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"67 ","pages":"Article 101413"},"PeriodicalIF":5.9,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1879625724000270/pdfft?md5=b1c8568f6544b889bae01e107ab80485&pid=1-s2.0-S1879625724000270-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141310313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-04DOI: 10.1016/j.coviro.2024.101412
Ali Amini , Paul Klenerman , Nicholas M Provine
Mucosal-associated invariant T (MAIT) cells are an unconventional T cell population that are highly abundant in humans. They possess a semi-invariant T cell receptor (TCR) that recognises microbial metabolites formed during riboflavin biosynthesis, presented on a nonpolymorphic MHC-like molecule MR1. MAIT cells possess an array of effector functions, including type 1, type 17, and tissue repair activity. Deployment of these functions depends on the stimuli they receive through their TCR and/or cytokine receptors. Strong cytokine signalling, such as in response to vaccination, can bypass TCR triggering and provokes a strong proinflammatory response. Although data are still emerging, multiple aspects of MAIT cell biology are associated with modulation of immunity induced by the coronavirus disease 2019 mRNA and adenovirus vector vaccines. In this review, we will address how MAIT cells may play a role in immunogenicity of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and how these cells can be harnessed as cellular adjuvants.
粘膜相关不变性 T 细胞(MAIT)是一种非常规的 T 细胞群,在人体内含量很高。它们拥有一种半不变性 T 细胞受体 (TCR),能识别核黄素生物合成过程中形成的微生物代谢物,这些代谢物呈现在非多态性 MHC 类分子 MR1 上。MAIT 细胞具有一系列效应功能,包括 1 型、17 型和组织修复活性。这些功能的发挥取决于它们通过 TCR 和/或细胞因子受体接收到的刺激。强烈的细胞因子信号(如疫苗接种反应)可绕过 TCR 触发,引发强烈的促炎反应。尽管数据仍在不断涌现,但 MAIT 细胞生物学的多个方面都与 2019 年冠状病毒病 mRNA 和腺病毒载体疫苗诱导的免疫调节有关。在本综述中,我们将讨论 MAIT 细胞如何在严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)疫苗的免疫原性中发挥作用,以及如何利用这些细胞作为细胞佐剂。
{"title":"Role of mucosal-associated invariant T cells in coronavirus disease 2019 vaccine immunogenicity","authors":"Ali Amini , Paul Klenerman , Nicholas M Provine","doi":"10.1016/j.coviro.2024.101412","DOIUrl":"https://doi.org/10.1016/j.coviro.2024.101412","url":null,"abstract":"<div><p>Mucosal-associated invariant T (MAIT) cells are an unconventional T cell population that are highly abundant in humans. They possess a semi-invariant T cell receptor (TCR) that recognises microbial metabolites formed during riboflavin biosynthesis, presented on a nonpolymorphic MHC-like molecule MR1. MAIT cells possess an array of effector functions, including type 1, type 17, and tissue repair activity. Deployment of these functions depends on the stimuli they receive through their TCR and/or cytokine receptors. Strong cytokine signalling, such as in response to vaccination, can bypass TCR triggering and provokes a strong proinflammatory response. Although data are still emerging, multiple aspects of MAIT cell biology are associated with modulation of immunity induced by the coronavirus disease 2019 mRNA and adenovirus vector vaccines. In this review, we will address how MAIT cells may play a role in immunogenicity of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and how these cells can be harnessed as cellular adjuvants.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":"67 ","pages":"Article 101412"},"PeriodicalIF":5.9,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1879625724000269/pdfft?md5=8838ea4613372645c271faa7dcfb1024&pid=1-s2.0-S1879625724000269-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141250325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}