基于放射组学的身体成分分析对肝细胞癌患者1年生存率的预后作用。

IF 8.9 1区 医学 Journal of Cachexia, Sarcopenia and Muscle Pub Date : 2023-08-17 DOI:10.1002/jcsm.13315
Sylvia Saalfeld, Robert Kreher, Georg Hille, Uli Niemann, Mattes Hinnerichs, Osman Öcal, Kerstin Schütte, Christoph J. Zech, Christian Loewe, Otto van Delden, Vincent Vandecaveye, Chris Verslype, Bernhard Gebauer, Christian Sengel, Irene Bargellini, Roberto Iezzi, Thomas Berg, Heinz J. Klümpen, Julia Benckert, Antonio Gasbarrini, Holger Amthauer, Bruno Sangro, Peter Malfertheiner, Bernhard Preim, Jens Ricke, Max Seidensticker, Maciej Pech, Alexey Surov
{"title":"基于放射组学的身体成分分析对肝细胞癌患者1年生存率的预后作用。","authors":"Sylvia Saalfeld,&nbsp;Robert Kreher,&nbsp;Georg Hille,&nbsp;Uli Niemann,&nbsp;Mattes Hinnerichs,&nbsp;Osman Öcal,&nbsp;Kerstin Schütte,&nbsp;Christoph J. Zech,&nbsp;Christian Loewe,&nbsp;Otto van Delden,&nbsp;Vincent Vandecaveye,&nbsp;Chris Verslype,&nbsp;Bernhard Gebauer,&nbsp;Christian Sengel,&nbsp;Irene Bargellini,&nbsp;Roberto Iezzi,&nbsp;Thomas Berg,&nbsp;Heinz J. Klümpen,&nbsp;Julia Benckert,&nbsp;Antonio Gasbarrini,&nbsp;Holger Amthauer,&nbsp;Bruno Sangro,&nbsp;Peter Malfertheiner,&nbsp;Bernhard Preim,&nbsp;Jens Ricke,&nbsp;Max Seidensticker,&nbsp;Maciej Pech,&nbsp;Alexey Surov","doi":"10.1002/jcsm.13315","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Parameters of body composition have prognostic potential in patients with oncologic diseases. The aim of the present study was to analyse the prognostic potential of radiomics-based parameters of the skeletal musculature and adipose tissues in patients with advanced hepatocellular carcinoma (HCC).</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Radiomics features were extracted from a cohort of 297 HCC patients as post hoc sub-study of the SORAMIC randomized controlled trial. Patients were treated with selective internal radiation therapy (SIRT) in combination with sorafenib or with sorafenib alone yielding two groups: (1) sorafenib monotherapy (<i>n</i> = 147) and (2) sorafenib and SIRT (<i>n</i> = 150). The main outcome was 1-year survival. Segmentation of muscle tissue and adipose tissue was used to retrieve 881 features. Correlation analysis and feature cleansing yielded 292 features for each patient group and each tissue type. We combined 9 feature selection methods with 10 feature set compositions to build 90 feature sets. We used 11 classifiers to build 990 models. We subdivided the patient groups into a train and validation cohort and a test cohort, that is, one third of the patient groups.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We used the train and validation set to identify the best feature selection and classification model and applied it to the test set for each patient group. Classification yields for patients who underwent sorafenib monotherapy an accuracy of 75.51% and area under the curve (AUC) of 0.7576 (95% confidence interval [CI]: 0.6376–0.8776). For patients who underwent treatment with SIRT and sorafenib, results are accuracy = 78.00% and AUC = 0.8032 (95% CI: 0.6930–0.9134).</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Parameters of radiomics-based analysis of the skeletal musculature and adipose tissue predict 1-year survival in patients with advanced HCC. The prognostic value of radiomics-based parameters was higher in patients who were treated with SIRT and sorafenib.</p>\n </section>\n </div>","PeriodicalId":186,"journal":{"name":"Journal of Cachexia, Sarcopenia and Muscle","volume":"14 5","pages":"2301-2309"},"PeriodicalIF":8.9000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcsm.13315","citationCount":"1","resultStr":"{\"title\":\"Prognostic role of radiomics-based body composition analysis for the 1-year survival for hepatocellular carcinoma patients\",\"authors\":\"Sylvia Saalfeld,&nbsp;Robert Kreher,&nbsp;Georg Hille,&nbsp;Uli Niemann,&nbsp;Mattes Hinnerichs,&nbsp;Osman Öcal,&nbsp;Kerstin Schütte,&nbsp;Christoph J. Zech,&nbsp;Christian Loewe,&nbsp;Otto van Delden,&nbsp;Vincent Vandecaveye,&nbsp;Chris Verslype,&nbsp;Bernhard Gebauer,&nbsp;Christian Sengel,&nbsp;Irene Bargellini,&nbsp;Roberto Iezzi,&nbsp;Thomas Berg,&nbsp;Heinz J. Klümpen,&nbsp;Julia Benckert,&nbsp;Antonio Gasbarrini,&nbsp;Holger Amthauer,&nbsp;Bruno Sangro,&nbsp;Peter Malfertheiner,&nbsp;Bernhard Preim,&nbsp;Jens Ricke,&nbsp;Max Seidensticker,&nbsp;Maciej Pech,&nbsp;Alexey Surov\",\"doi\":\"10.1002/jcsm.13315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Parameters of body composition have prognostic potential in patients with oncologic diseases. The aim of the present study was to analyse the prognostic potential of radiomics-based parameters of the skeletal musculature and adipose tissues in patients with advanced hepatocellular carcinoma (HCC).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Radiomics features were extracted from a cohort of 297 HCC patients as post hoc sub-study of the SORAMIC randomized controlled trial. Patients were treated with selective internal radiation therapy (SIRT) in combination with sorafenib or with sorafenib alone yielding two groups: (1) sorafenib monotherapy (<i>n</i> = 147) and (2) sorafenib and SIRT (<i>n</i> = 150). The main outcome was 1-year survival. Segmentation of muscle tissue and adipose tissue was used to retrieve 881 features. Correlation analysis and feature cleansing yielded 292 features for each patient group and each tissue type. We combined 9 feature selection methods with 10 feature set compositions to build 90 feature sets. We used 11 classifiers to build 990 models. We subdivided the patient groups into a train and validation cohort and a test cohort, that is, one third of the patient groups.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>We used the train and validation set to identify the best feature selection and classification model and applied it to the test set for each patient group. Classification yields for patients who underwent sorafenib monotherapy an accuracy of 75.51% and area under the curve (AUC) of 0.7576 (95% confidence interval [CI]: 0.6376–0.8776). For patients who underwent treatment with SIRT and sorafenib, results are accuracy = 78.00% and AUC = 0.8032 (95% CI: 0.6930–0.9134).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>Parameters of radiomics-based analysis of the skeletal musculature and adipose tissue predict 1-year survival in patients with advanced HCC. The prognostic value of radiomics-based parameters was higher in patients who were treated with SIRT and sorafenib.</p>\\n </section>\\n </div>\",\"PeriodicalId\":186,\"journal\":{\"name\":\"Journal of Cachexia, Sarcopenia and Muscle\",\"volume\":\"14 5\",\"pages\":\"2301-2309\"},\"PeriodicalIF\":8.9000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcsm.13315\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cachexia, Sarcopenia and Muscle\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcsm.13315\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cachexia, Sarcopenia and Muscle","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcsm.13315","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

背景:肿瘤疾病患者的身体组成参数具有潜在的预后潜力。本研究的目的是分析基于放射组学的骨骼肌组织和脂肪组织参数对晚期肝细胞癌(HCC)患者的预后潜力。方法:从297名HCC患者的队列中提取放射组学特征,作为SORAMIC随机对照试验的特设子研究。患者接受选择性内放射治疗(SIRT)联合索拉非尼或单独索拉非尼治疗,分为两组:(1)索拉非尼单药治疗(n=147)和(2)索拉非尼和SIRT治疗(n=150)。主要结果是1年生存率。使用肌肉组织和脂肪组织的分割来检索881个特征。相关性分析和特征清理为每个患者组和每个组织类型产生292个特征。我们将9种特征选择方法与10种特征集组成相结合,构建了90个特征集。我们使用11个分类器构建了990个模型。我们将患者组细分为训练和验证队列和测试队列,即三分之一的患者组。结果:我们使用训练和验证集来确定最佳特征选择和分类模型,并将其应用于每个患者组的测试集。接受索拉非尼单药治疗的患者的分类准确率为75.51%,曲线下面积(AUC)为0.7576(95%置信区间[CI]:0.6376-0.8876),结果的准确率为78.00%,AUC=0.8032(95%可信区间:0.6930-0.9134)。结论:基于骨骼肌组织和脂肪组织放射组学分析的参数可以预测晚期HCC患者的1年生存率。在接受SIRT和索拉非尼治疗的患者中,基于放射组学的参数的预后价值更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Prognostic role of radiomics-based body composition analysis for the 1-year survival for hepatocellular carcinoma patients

Background

Parameters of body composition have prognostic potential in patients with oncologic diseases. The aim of the present study was to analyse the prognostic potential of radiomics-based parameters of the skeletal musculature and adipose tissues in patients with advanced hepatocellular carcinoma (HCC).

Methods

Radiomics features were extracted from a cohort of 297 HCC patients as post hoc sub-study of the SORAMIC randomized controlled trial. Patients were treated with selective internal radiation therapy (SIRT) in combination with sorafenib or with sorafenib alone yielding two groups: (1) sorafenib monotherapy (n = 147) and (2) sorafenib and SIRT (n = 150). The main outcome was 1-year survival. Segmentation of muscle tissue and adipose tissue was used to retrieve 881 features. Correlation analysis and feature cleansing yielded 292 features for each patient group and each tissue type. We combined 9 feature selection methods with 10 feature set compositions to build 90 feature sets. We used 11 classifiers to build 990 models. We subdivided the patient groups into a train and validation cohort and a test cohort, that is, one third of the patient groups.

Results

We used the train and validation set to identify the best feature selection and classification model and applied it to the test set for each patient group. Classification yields for patients who underwent sorafenib monotherapy an accuracy of 75.51% and area under the curve (AUC) of 0.7576 (95% confidence interval [CI]: 0.6376–0.8776). For patients who underwent treatment with SIRT and sorafenib, results are accuracy = 78.00% and AUC = 0.8032 (95% CI: 0.6930–0.9134).

Conclusions

Parameters of radiomics-based analysis of the skeletal musculature and adipose tissue predict 1-year survival in patients with advanced HCC. The prognostic value of radiomics-based parameters was higher in patients who were treated with SIRT and sorafenib.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cachexia, Sarcopenia and Muscle
Journal of Cachexia, Sarcopenia and Muscle Medicine-Orthopedics and Sports Medicine
自引率
12.40%
发文量
0
期刊介绍: The Journal of Cachexia, Sarcopenia, and Muscle is a prestigious, peer-reviewed international publication committed to disseminating research and clinical insights pertaining to cachexia, sarcopenia, body composition, and the physiological and pathophysiological alterations occurring throughout the lifespan and in various illnesses across the spectrum of life sciences. This journal serves as a valuable resource for physicians, biochemists, biologists, dieticians, pharmacologists, and students alike.
期刊最新文献
Anabolic Sensitivity in Healthy, Lean, Older Men Is Associated With Higher Expression of Amino Acid Sensors and mTORC1 Activators Compared to Young. Comment on 'Systematic Druggable Genome-Wide Mendelian Randomization Identifies Therapeutic Targets for Sarcopenia' by Yin Et Al. Concordance of Freehand 3D Ultrasound Muscle Measurements With Sarcopenia Parameters in a Geriatric Rehabilitation Ward. Assessing Association Between Circulating Bilirubin Levels and the Risk of Frailty: An Observational and Mendelian Randomization Study. The Stimulator of Interferon Genes Deficiency Attenuates Diabetic Myopathy Through Inhibiting NLRP3-Mediated Pyroptosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1