{"title":"螺旋动物生物矿化进化中的细胞类型和基因调控网络方法。","authors":"Victoria A Sleight","doi":"10.1093/bfgp/elad033","DOIUrl":null,"url":null,"abstract":"<p><p>Biomineralisation is the process by which living organisms produce hard structures such as shells and bone. There are multiple independent origins of biomineralised skeletons across the tree of life. This review gives a glimpse into the diversity of spiralian biominerals and what they can teach us about the evolution of novelty. It discusses different levels of biological organisation that may be informative to understand the evolution of biomineralisation and considers the relationship between skeletal and non-skeletal biominerals. More specifically, this review explores if cell type and gene regulatory network approaches could enhance our understanding of the evolutionary origins of biomineralisation.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"509-516"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658180/pdf/","citationCount":"0","resultStr":"{\"title\":\"Cell type and gene regulatory network approaches in the evolution of spiralian biomineralisation.\",\"authors\":\"Victoria A Sleight\",\"doi\":\"10.1093/bfgp/elad033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Biomineralisation is the process by which living organisms produce hard structures such as shells and bone. There are multiple independent origins of biomineralised skeletons across the tree of life. This review gives a glimpse into the diversity of spiralian biominerals and what they can teach us about the evolution of novelty. It discusses different levels of biological organisation that may be informative to understand the evolution of biomineralisation and considers the relationship between skeletal and non-skeletal biominerals. More specifically, this review explores if cell type and gene regulatory network approaches could enhance our understanding of the evolutionary origins of biomineralisation.</p>\",\"PeriodicalId\":55323,\"journal\":{\"name\":\"Briefings in Functional Genomics\",\"volume\":\" \",\"pages\":\"509-516\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10658180/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in Functional Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bfgp/elad033\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elad033","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Cell type and gene regulatory network approaches in the evolution of spiralian biomineralisation.
Biomineralisation is the process by which living organisms produce hard structures such as shells and bone. There are multiple independent origins of biomineralised skeletons across the tree of life. This review gives a glimpse into the diversity of spiralian biominerals and what they can teach us about the evolution of novelty. It discusses different levels of biological organisation that may be informative to understand the evolution of biomineralisation and considers the relationship between skeletal and non-skeletal biominerals. More specifically, this review explores if cell type and gene regulatory network approaches could enhance our understanding of the evolutionary origins of biomineralisation.
期刊介绍:
Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data.
The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.