Shuai Ma, Xu Chi, Yusheng Cai, Zhejun Ji, Si Wang, Jie Ren, Guang-Hui Liu
{"title":"在单细胞水平上解码衰老特征。","authors":"Shuai Ma, Xu Chi, Yusheng Cai, Zhejun Ji, Si Wang, Jie Ren, Guang-Hui Liu","doi":"10.1146/annurev-biodatasci-020722-120642","DOIUrl":null,"url":null,"abstract":"<p><p>Organismal aging exhibits wide-ranging hallmarks in divergent cell types across tissues, organs, and systems. The advancement of single-cell technologies and generation of rich datasets have afforded the scientific community the opportunity to decode these hallmarks of aging at an unprecedented scope and resolution. In this review, we describe the technological advancements and bioinformatic methodologies enabling data interpretation at the cellular level. Then, we outline the application of such technologies for decoding aging hallmarks and potential intervention targets and summarize common themes and context-specific molecular features in representative organ systems across the body. Finally, we provide a brief summary of available databases relevant for aging research and present an outlook on the opportunities in this emerging field.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Decoding Aging Hallmarks at the Single-Cell Level.\",\"authors\":\"Shuai Ma, Xu Chi, Yusheng Cai, Zhejun Ji, Si Wang, Jie Ren, Guang-Hui Liu\",\"doi\":\"10.1146/annurev-biodatasci-020722-120642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organismal aging exhibits wide-ranging hallmarks in divergent cell types across tissues, organs, and systems. The advancement of single-cell technologies and generation of rich datasets have afforded the scientific community the opportunity to decode these hallmarks of aging at an unprecedented scope and resolution. In this review, we describe the technological advancements and bioinformatic methodologies enabling data interpretation at the cellular level. Then, we outline the application of such technologies for decoding aging hallmarks and potential intervention targets and summarize common themes and context-specific molecular features in representative organ systems across the body. Finally, we provide a brief summary of available databases relevant for aging research and present an outlook on the opportunities in this emerging field.</p>\",\"PeriodicalId\":29775,\"journal\":{\"name\":\"Annual Review of Biomedical Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-biodatasci-020722-120642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-020722-120642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Decoding Aging Hallmarks at the Single-Cell Level.
Organismal aging exhibits wide-ranging hallmarks in divergent cell types across tissues, organs, and systems. The advancement of single-cell technologies and generation of rich datasets have afforded the scientific community the opportunity to decode these hallmarks of aging at an unprecedented scope and resolution. In this review, we describe the technological advancements and bioinformatic methodologies enabling data interpretation at the cellular level. Then, we outline the application of such technologies for decoding aging hallmarks and potential intervention targets and summarize common themes and context-specific molecular features in representative organ systems across the body. Finally, we provide a brief summary of available databases relevant for aging research and present an outlook on the opportunities in this emerging field.
期刊介绍:
The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.