在网络心理测量中应该选择哪种估计方法?为应用研究人员制定指导方针。

IF 7.6 1区 心理学 Q1 PSYCHOLOGY, MULTIDISCIPLINARY Psychological methods Pub Date : 2023-08-01 DOI:10.1037/met0000439
Adela-Maria Isvoranu, Sacha Epskamp
{"title":"在网络心理测量中应该选择哪种估计方法?为应用研究人员制定指导方针。","authors":"Adela-Maria Isvoranu,&nbsp;Sacha Epskamp","doi":"10.1037/met0000439","DOIUrl":null,"url":null,"abstract":"<p><p>The Gaussian graphical model (GGM) has recently grown popular in psychological research, with a large body of estimation methods being proposed and discussed across various fields of study, and several algorithms being identified and recommend as applicable to psychological data sets. Such high-dimensional model estimation, however, is not trivial, and algorithms tend to perform differently in different settings. In addition, psychological research poses unique challenges, including placing a strong focus on weak edges (e.g., bridge edges), handling data measured on ordered scales, and relatively limited sample sizes. As a result, there is currently no consensus regarding which estimation procedure performs best in which setting. In this large-scale simulation study, we aimed to overcome this gap in the literature by comparing the performance of several estimation algorithms suitable for Gaussian and skewed ordered categorical data across a multitude of settings, as to arrive at concrete guidelines from applied researchers. In total, we investigated 60 different metrics across 564,000 simulated data sets. We summarized our findings through a platform that allows for manually exploring simulation results. Overall, we found that an exchange between discovery (e.g., sensitivity, edge weight correlation) and caution (e.g., specificity, precision) should always be expected, and achieving both-which is a requirement for perfect replicability-is difficult. Further, we identified that the estimation method is best chosen in light of each research question and have highlighted, alongside desirable asymptotic properties and low sample size discovery, results according to most common research questions in the field. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":20782,"journal":{"name":"Psychological methods","volume":"28 4","pages":"925-946"},"PeriodicalIF":7.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Which estimation method to choose in network psychometrics? Deriving guidelines for applied researchers.\",\"authors\":\"Adela-Maria Isvoranu,&nbsp;Sacha Epskamp\",\"doi\":\"10.1037/met0000439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Gaussian graphical model (GGM) has recently grown popular in psychological research, with a large body of estimation methods being proposed and discussed across various fields of study, and several algorithms being identified and recommend as applicable to psychological data sets. Such high-dimensional model estimation, however, is not trivial, and algorithms tend to perform differently in different settings. In addition, psychological research poses unique challenges, including placing a strong focus on weak edges (e.g., bridge edges), handling data measured on ordered scales, and relatively limited sample sizes. As a result, there is currently no consensus regarding which estimation procedure performs best in which setting. In this large-scale simulation study, we aimed to overcome this gap in the literature by comparing the performance of several estimation algorithms suitable for Gaussian and skewed ordered categorical data across a multitude of settings, as to arrive at concrete guidelines from applied researchers. In total, we investigated 60 different metrics across 564,000 simulated data sets. We summarized our findings through a platform that allows for manually exploring simulation results. Overall, we found that an exchange between discovery (e.g., sensitivity, edge weight correlation) and caution (e.g., specificity, precision) should always be expected, and achieving both-which is a requirement for perfect replicability-is difficult. Further, we identified that the estimation method is best chosen in light of each research question and have highlighted, alongside desirable asymptotic properties and low sample size discovery, results according to most common research questions in the field. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>\",\"PeriodicalId\":20782,\"journal\":{\"name\":\"Psychological methods\",\"volume\":\"28 4\",\"pages\":\"925-946\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Psychological methods\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1037/met0000439\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychological methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1037/met0000439","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 33

摘要

高斯图形模型(GGM)最近在心理学研究中越来越流行,在各个研究领域提出和讨论了大量的估计方法,并确定了几种适用于心理学数据集的算法。然而,这种高维模型估计并不是微不足道的,而且算法在不同的设置中往往表现不同。此外,心理学研究提出了独特的挑战,包括将重点放在弱边缘(例如,桥梁边缘),处理有序尺度上测量的数据,以及相对有限的样本量。因此,目前对于哪种评估过程在哪种环境下表现最好还没有达成一致意见。在这项大规模的模拟研究中,我们的目标是通过比较几种适合高斯和偏序分类数据的估计算法在多种设置中的性能来克服文献中的这一差距,从而得出应用研究人员的具体指导方针。我们总共调查了564,000个模拟数据集中的60个不同指标。我们通过一个允许手动探索模拟结果的平台总结了我们的发现。总的来说,我们发现发现(例如,敏感性,边缘权重相关性)和谨慎(例如,特异性,精度)之间的交换应该始终是预期的,并且实现两者-这是完美可复制性的要求-是困难的。此外,我们确定了根据每个研究问题最好选择估计方法,并根据该领域最常见的研究问题强调了理想的渐近性质和低样本量发现结果。(PsycInfo数据库记录(c) 2023 APA,版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Which estimation method to choose in network psychometrics? Deriving guidelines for applied researchers.

The Gaussian graphical model (GGM) has recently grown popular in psychological research, with a large body of estimation methods being proposed and discussed across various fields of study, and several algorithms being identified and recommend as applicable to psychological data sets. Such high-dimensional model estimation, however, is not trivial, and algorithms tend to perform differently in different settings. In addition, psychological research poses unique challenges, including placing a strong focus on weak edges (e.g., bridge edges), handling data measured on ordered scales, and relatively limited sample sizes. As a result, there is currently no consensus regarding which estimation procedure performs best in which setting. In this large-scale simulation study, we aimed to overcome this gap in the literature by comparing the performance of several estimation algorithms suitable for Gaussian and skewed ordered categorical data across a multitude of settings, as to arrive at concrete guidelines from applied researchers. In total, we investigated 60 different metrics across 564,000 simulated data sets. We summarized our findings through a platform that allows for manually exploring simulation results. Overall, we found that an exchange between discovery (e.g., sensitivity, edge weight correlation) and caution (e.g., specificity, precision) should always be expected, and achieving both-which is a requirement for perfect replicability-is difficult. Further, we identified that the estimation method is best chosen in light of each research question and have highlighted, alongside desirable asymptotic properties and low sample size discovery, results according to most common research questions in the field. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Psychological methods
Psychological methods PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
13.10
自引率
7.10%
发文量
159
期刊介绍: Psychological Methods is devoted to the development and dissemination of methods for collecting, analyzing, understanding, and interpreting psychological data. Its purpose is the dissemination of innovations in research design, measurement, methodology, and quantitative and qualitative analysis to the psychological community; its further purpose is to promote effective communication about related substantive and methodological issues. The audience is expected to be diverse and to include those who develop new procedures, those who are responsible for undergraduate and graduate training in design, measurement, and statistics, as well as those who employ those procedures in research.
期刊最新文献
Simulation studies for methodological research in psychology: A standardized template for planning, preregistration, and reporting. How to conduct an integrative mixed methods meta-analysis: A tutorial for the systematic review of quantitative and qualitative evidence. Updated guidelines on selecting an intraclass correlation coefficient for interrater reliability, with applications to incomplete observational designs. Data-driven covariate selection for confounding adjustment by focusing on the stability of the effect estimator. Estimating and investigating multiple constructs multiple indicators social relations models with and without roles within the traditional structural equation modeling framework: A tutorial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1