{"title":"问题是左还是右:使用以自我为中心的参照系和右眼优势来理解宽吻海豚的手势","authors":"Masaki Tomonaga, Yuka Uwano-Ito, Toyoshi Saito, Natsuko Sakurai","doi":"10.1007/s10071-023-01799-6","DOIUrl":null,"url":null,"abstract":"<div><p>How do bottlenose dolphins visually perceive the space around them? In particular, what cues do they use as a frame of reference for left–right perception? To address this question, we examined the dolphin's responses to various manipulations of the spatial relationship between the dolphin and the trainer by using gestural signs for actions given by the trainer, which have different meanings in the left and right hands. When the dolphins were tested with their backs to the trainer (Experiment 1) or in an inverted position underwater (Experiments 2 and 3), correct responses from the trainer's perspective were maintained for signs related to movement direction instructions. In contrast, reversed responses were frequently observed for signs that required different sounds for the left and right hands. When the movement direction instructions were presented with symmetrical graphic signs such as \" × \" and \"●\", accuracy decreased in the inverted posture (Experiment 3). Furthermore, when the signs for sounds were presented from either the left or right side of the dolphin's body, performance was better when the side of the sign movement coincided with the body side on which it was presented than when it was mismatched (Experiment 4). In the final experiment, when one eye was covered with an eyecup, the results showed that, as in the case of body-side presentation, performance was better when the open eye coincided with the side on which the sign movement was presented. These results indicate that dolphins used the egocentric frame for visuospatial cognition. In addition, they showed better performances when the gestural signs were presented to the right eye, suggesting the possibility of a left-hemispheric advantage in the dolphin's visuospatial cognition.\n</p></div>","PeriodicalId":7879,"journal":{"name":"Animal Cognition","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10071-023-01799-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Left or right, that is the question: use of egocentric frame of reference and the right-eye advantage for understanding gestural signs in bottlenose dolphins (Tursiops truncatus)\",\"authors\":\"Masaki Tomonaga, Yuka Uwano-Ito, Toyoshi Saito, Natsuko Sakurai\",\"doi\":\"10.1007/s10071-023-01799-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>How do bottlenose dolphins visually perceive the space around them? In particular, what cues do they use as a frame of reference for left–right perception? To address this question, we examined the dolphin's responses to various manipulations of the spatial relationship between the dolphin and the trainer by using gestural signs for actions given by the trainer, which have different meanings in the left and right hands. When the dolphins were tested with their backs to the trainer (Experiment 1) or in an inverted position underwater (Experiments 2 and 3), correct responses from the trainer's perspective were maintained for signs related to movement direction instructions. In contrast, reversed responses were frequently observed for signs that required different sounds for the left and right hands. When the movement direction instructions were presented with symmetrical graphic signs such as \\\" × \\\" and \\\"●\\\", accuracy decreased in the inverted posture (Experiment 3). Furthermore, when the signs for sounds were presented from either the left or right side of the dolphin's body, performance was better when the side of the sign movement coincided with the body side on which it was presented than when it was mismatched (Experiment 4). In the final experiment, when one eye was covered with an eyecup, the results showed that, as in the case of body-side presentation, performance was better when the open eye coincided with the side on which the sign movement was presented. These results indicate that dolphins used the egocentric frame for visuospatial cognition. In addition, they showed better performances when the gestural signs were presented to the right eye, suggesting the possibility of a left-hemispheric advantage in the dolphin's visuospatial cognition.\\n</p></div>\",\"PeriodicalId\":7879,\"journal\":{\"name\":\"Animal Cognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10071-023-01799-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal Cognition\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10071-023-01799-6\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Cognition","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10071-023-01799-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Left or right, that is the question: use of egocentric frame of reference and the right-eye advantage for understanding gestural signs in bottlenose dolphins (Tursiops truncatus)
How do bottlenose dolphins visually perceive the space around them? In particular, what cues do they use as a frame of reference for left–right perception? To address this question, we examined the dolphin's responses to various manipulations of the spatial relationship between the dolphin and the trainer by using gestural signs for actions given by the trainer, which have different meanings in the left and right hands. When the dolphins were tested with their backs to the trainer (Experiment 1) or in an inverted position underwater (Experiments 2 and 3), correct responses from the trainer's perspective were maintained for signs related to movement direction instructions. In contrast, reversed responses were frequently observed for signs that required different sounds for the left and right hands. When the movement direction instructions were presented with symmetrical graphic signs such as " × " and "●", accuracy decreased in the inverted posture (Experiment 3). Furthermore, when the signs for sounds were presented from either the left or right side of the dolphin's body, performance was better when the side of the sign movement coincided with the body side on which it was presented than when it was mismatched (Experiment 4). In the final experiment, when one eye was covered with an eyecup, the results showed that, as in the case of body-side presentation, performance was better when the open eye coincided with the side on which the sign movement was presented. These results indicate that dolphins used the egocentric frame for visuospatial cognition. In addition, they showed better performances when the gestural signs were presented to the right eye, suggesting the possibility of a left-hemispheric advantage in the dolphin's visuospatial cognition.
期刊介绍:
Animal Cognition is an interdisciplinary journal offering current research from many disciplines (ethology, behavioral ecology, animal behavior and learning, cognitive sciences, comparative psychology and evolutionary psychology) on all aspects of animal (and human) cognition in an evolutionary framework.
Animal Cognition publishes original empirical and theoretical work, reviews, methods papers, short communications and correspondence on the mechanisms and evolution of biologically rooted cognitive-intellectual structures.
The journal explores animal time perception and use; causality detection; innate reaction patterns and innate bases of learning; numerical competence and frequency expectancies; symbol use; communication; problem solving, animal thinking and use of tools, and the modularity of the mind.