{"title":"不同光照梯度下 Barbula indica 和 Conocephalum conicum 在光诱导过程中的光保护和光抑制作用。","authors":"Chung-I Chen, Kuan-Hung Lin, Meng-Yuan Huang, Kuei-Yu Yao, Chau-Ching Huang, Tzu-Chao Lin, En-Liang Chu, Jia-Dong Yang, Ching-Wen Wang","doi":"10.1007/s11120-023-01030-0","DOIUrl":null,"url":null,"abstract":"<p><p>The objectives of this study were to measure the chlorophyll fluorescence (ChlF) parameters of Barbula indica (Hook.) Spreng and Conocephalum conicum (L.) Dumort subjected to various light intensities (LI) as a reflection of their adaptability to their habitats. The electron transport rate (ETR) of all plants under 500 μmol m<sup>-2</sup> s<sup>-1</sup> photosynthetic photon flux density (PPFD) was significantly higher than other LI treatments, implying that these plants could be grown under a specific and optimal light intensity adapted to 500 PPFD conditions. As LI increased from 50 to 2,000 PPFD, we observed in all plants increased non-photochemical quenching (NPQ) and photo-inhibitory quenching (q<sub>I</sub>) and decreased photosystem II efficiency (ΦPSII), potential quantum efficiency of PSII (F<sub>v</sub>/F<sub>m</sub>), actual PSII efficiency (ΔF/F<sub>m</sub>'%), and F<sub>v</sub>/F<sub>m</sub>%. In addition, energy-dependent quenching (q<sub>E</sub>), the light protection system (q<sub>E</sub> + q<sub>Z</sub> + q<sub>T</sub>), and q<sub>I</sub> increased as ΦPSII decreased and photo-inhibition% increased under 1000, 1500, and 2000 PPFD conditions, suggesting that these plants had higher photo-protective ability under high LI treatments to maintain higher photosynthetic system performance. B. indica plants remained photochemically active and maintained higher q<sub>E</sub> under 300, 500, and 1000 PPFD, whereas C. conicum q<sub>Z</sub> + q<sub>T</sub> exhibited higher photo-protection under 500, 1000, and 1500 PPFD conditions. These ChlF indices can be used for predicting photosynthetic responses to light induction in different bryophytes and provide a theoretical basis for ecological monitoring.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photo-protection and photo-inhibition during light induction in Barbula indica and Conocephalum conicum under different light gradients.\",\"authors\":\"Chung-I Chen, Kuan-Hung Lin, Meng-Yuan Huang, Kuei-Yu Yao, Chau-Ching Huang, Tzu-Chao Lin, En-Liang Chu, Jia-Dong Yang, Ching-Wen Wang\",\"doi\":\"10.1007/s11120-023-01030-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The objectives of this study were to measure the chlorophyll fluorescence (ChlF) parameters of Barbula indica (Hook.) Spreng and Conocephalum conicum (L.) Dumort subjected to various light intensities (LI) as a reflection of their adaptability to their habitats. The electron transport rate (ETR) of all plants under 500 μmol m<sup>-2</sup> s<sup>-1</sup> photosynthetic photon flux density (PPFD) was significantly higher than other LI treatments, implying that these plants could be grown under a specific and optimal light intensity adapted to 500 PPFD conditions. As LI increased from 50 to 2,000 PPFD, we observed in all plants increased non-photochemical quenching (NPQ) and photo-inhibitory quenching (q<sub>I</sub>) and decreased photosystem II efficiency (ΦPSII), potential quantum efficiency of PSII (F<sub>v</sub>/F<sub>m</sub>), actual PSII efficiency (ΔF/F<sub>m</sub>'%), and F<sub>v</sub>/F<sub>m</sub>%. In addition, energy-dependent quenching (q<sub>E</sub>), the light protection system (q<sub>E</sub> + q<sub>Z</sub> + q<sub>T</sub>), and q<sub>I</sub> increased as ΦPSII decreased and photo-inhibition% increased under 1000, 1500, and 2000 PPFD conditions, suggesting that these plants had higher photo-protective ability under high LI treatments to maintain higher photosynthetic system performance. B. indica plants remained photochemically active and maintained higher q<sub>E</sub> under 300, 500, and 1000 PPFD, whereas C. conicum q<sub>Z</sub> + q<sub>T</sub> exhibited higher photo-protection under 500, 1000, and 1500 PPFD conditions. These ChlF indices can be used for predicting photosynthetic responses to light induction in different bryophytes and provide a theoretical basis for ecological monitoring.</p>\",\"PeriodicalId\":20130,\"journal\":{\"name\":\"Photosynthesis Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photosynthesis Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11120-023-01030-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthesis Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11120-023-01030-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/19 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Photo-protection and photo-inhibition during light induction in Barbula indica and Conocephalum conicum under different light gradients.
The objectives of this study were to measure the chlorophyll fluorescence (ChlF) parameters of Barbula indica (Hook.) Spreng and Conocephalum conicum (L.) Dumort subjected to various light intensities (LI) as a reflection of their adaptability to their habitats. The electron transport rate (ETR) of all plants under 500 μmol m-2 s-1 photosynthetic photon flux density (PPFD) was significantly higher than other LI treatments, implying that these plants could be grown under a specific and optimal light intensity adapted to 500 PPFD conditions. As LI increased from 50 to 2,000 PPFD, we observed in all plants increased non-photochemical quenching (NPQ) and photo-inhibitory quenching (qI) and decreased photosystem II efficiency (ΦPSII), potential quantum efficiency of PSII (Fv/Fm), actual PSII efficiency (ΔF/Fm'%), and Fv/Fm%. In addition, energy-dependent quenching (qE), the light protection system (qE + qZ + qT), and qI increased as ΦPSII decreased and photo-inhibition% increased under 1000, 1500, and 2000 PPFD conditions, suggesting that these plants had higher photo-protective ability under high LI treatments to maintain higher photosynthetic system performance. B. indica plants remained photochemically active and maintained higher qE under 300, 500, and 1000 PPFD, whereas C. conicum qZ + qT exhibited higher photo-protection under 500, 1000, and 1500 PPFD conditions. These ChlF indices can be used for predicting photosynthetic responses to light induction in different bryophytes and provide a theoretical basis for ecological monitoring.
期刊介绍:
Photosynthesis Research is an international journal open to papers of merit dealing with both basic and applied aspects of photosynthesis. It covers all aspects of photosynthesis research, including, but not limited to, light absorption and emission, excitation energy transfer, primary photochemistry, model systems, membrane components, protein complexes, electron transport, photophosphorylation, carbon assimilation, regulatory phenomena, molecular biology, environmental and ecological aspects, photorespiration, and bacterial and algal photosynthesis.