首页 > 最新文献

Photosynthesis Research最新文献

英文 中文
Machine learning models for segmentation and classification of cyanobacterial cells.
IF 2.9 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2025-02-08 DOI: 10.1007/s11120-025-01140-x
Clair A Huffine, Zachary L Maas, Anton Avramov, Christian M Brininger, Jeffrey C Cameron, Jian Wei Tay

Timelapse microscopy has recently been employed to study the metabolism and physiology of cyanobacteria at the single-cell level. However, the identification of individual cells in brightfield images remains a significant challenge. Traditional intensity-based segmentation algorithms perform poorly when identifying individual cells in dense colonies due to a lack of contrast between neighboring cells. Here, we describe a newly developed software package called Cypose which uses machine learning (ML) models to solve two specific tasks: segmentation of individual cyanobacterial cells, and classification of cellular phenotypes. The segmentation models are based on the Cellpose framework, while classification is performed using a convolutional neural network named Cyclass. To our knowledge, these are the first developed ML-based models for cyanobacteria segmentation and classification. When compared to other methods, our segmentation models showed improved performance and were able to segment cells with varied morphological phenotypes, as well as differentiate between live and lysed cells. We also found that our models were robust to imaging artifacts, such as dust and cell debris. Additionally, the classification model was able to identify different cellular phenotypes using only images as input. Together, these models improve cell segmentation accuracy and enable high-throughput analysis of dense cyanobacterial colonies and filamentous cyanobacteria.

{"title":"Machine learning models for segmentation and classification of cyanobacterial cells.","authors":"Clair A Huffine, Zachary L Maas, Anton Avramov, Christian M Brininger, Jeffrey C Cameron, Jian Wei Tay","doi":"10.1007/s11120-025-01140-x","DOIUrl":"10.1007/s11120-025-01140-x","url":null,"abstract":"<p><p>Timelapse microscopy has recently been employed to study the metabolism and physiology of cyanobacteria at the single-cell level. However, the identification of individual cells in brightfield images remains a significant challenge. Traditional intensity-based segmentation algorithms perform poorly when identifying individual cells in dense colonies due to a lack of contrast between neighboring cells. Here, we describe a newly developed software package called Cypose which uses machine learning (ML) models to solve two specific tasks: segmentation of individual cyanobacterial cells, and classification of cellular phenotypes. The segmentation models are based on the Cellpose framework, while classification is performed using a convolutional neural network named Cyclass. To our knowledge, these are the first developed ML-based models for cyanobacteria segmentation and classification. When compared to other methods, our segmentation models showed improved performance and were able to segment cells with varied morphological phenotypes, as well as differentiate between live and lysed cells. We also found that our models were robust to imaging artifacts, such as dust and cell debris. Additionally, the classification model was able to identify different cellular phenotypes using only images as input. Together, these models improve cell segmentation accuracy and enable high-throughput analysis of dense cyanobacterial colonies and filamentous cyanobacteria.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":"163 1","pages":"16"},"PeriodicalIF":2.9,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143374548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aquatic plant Myriophyllum spicatum displays contrasting morphological, photosynthetic, and transcriptomic responses between its aquatic and terrestrial morphotypes.
IF 2.9 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2025-02-03 DOI: 10.1007/s11120-025-01138-5
Huan Xu, Wei Li, Wenlong Fu, Zuoming Xie, Wenmin Huang

Myriophyllum spicatum, a semi-aquatic plant, can develop heterophylly by forming both submerged and aerial leaves to adapt to water level variations in its habitat. The aerial leaves exhibit shorter and fewer lobes, but thicker cuticle and developed stomata than submerged leaves. The heterophylly exhibited by M. spicatum could be controlled by hormones including abscisic acid, indole-3-acetic acid, and Jasmonic acid, as their levels were consistently higher in aerial leaves than in submerged leaves. Genes responsible for the formation of cuticle and stomata exhibited elevated expression in the aerial leaves, offering a molecular explanation for their structural adaptations to terrestrial environment. Moreover, aerial leaves exhibited greater resistance to intense light, while submerged leaves demonstrated a pronounced capacity of utilizing HCO3- for photosynthesis. Differential gene expression patterns pertaining to photosynthesis, carotenoid production, and HCO3- utilization elucidated the molecular mechanisms driving M. spicatum's photosynthetic adaptations to aquatic and terrestrial environment. In conclusion, the ability of M. spicatum to withstand changing water levels can be linked to its adaptable phenotype and the genetic characteristics inherited from its terrestrial ancestors, both of which are governed by hormonal regulation. These features may allow M. spicatum to outcompete other macrophytes that are more sensitive to water level fluctuations in their growing surroundings.

{"title":"Aquatic plant Myriophyllum spicatum displays contrasting morphological, photosynthetic, and transcriptomic responses between its aquatic and terrestrial morphotypes.","authors":"Huan Xu, Wei Li, Wenlong Fu, Zuoming Xie, Wenmin Huang","doi":"10.1007/s11120-025-01138-5","DOIUrl":"https://doi.org/10.1007/s11120-025-01138-5","url":null,"abstract":"<p><p>Myriophyllum spicatum, a semi-aquatic plant, can develop heterophylly by forming both submerged and aerial leaves to adapt to water level variations in its habitat. The aerial leaves exhibit shorter and fewer lobes, but thicker cuticle and developed stomata than submerged leaves. The heterophylly exhibited by M. spicatum could be controlled by hormones including abscisic acid, indole-3-acetic acid, and Jasmonic acid, as their levels were consistently higher in aerial leaves than in submerged leaves. Genes responsible for the formation of cuticle and stomata exhibited elevated expression in the aerial leaves, offering a molecular explanation for their structural adaptations to terrestrial environment. Moreover, aerial leaves exhibited greater resistance to intense light, while submerged leaves demonstrated a pronounced capacity of utilizing HCO<sub>3</sub><sup>-</sup> for photosynthesis. Differential gene expression patterns pertaining to photosynthesis, carotenoid production, and HCO<sub>3</sub><sup>-</sup> utilization elucidated the molecular mechanisms driving M. spicatum's photosynthetic adaptations to aquatic and terrestrial environment. In conclusion, the ability of M. spicatum to withstand changing water levels can be linked to its adaptable phenotype and the genetic characteristics inherited from its terrestrial ancestors, both of which are governed by hormonal regulation. These features may allow M. spicatum to outcompete other macrophytes that are more sensitive to water level fluctuations in their growing surroundings.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":"163 1","pages":"15"},"PeriodicalIF":2.9,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143080853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive significance of age- and light-related variation in needle structure, photochemistry, and pigments in evergreen coniferous trees. 常绿针叶树针叶结构、光化学和色素随年龄和光照变化的适应意义
IF 2.9 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2025-02-01 Epub Date: 2024-12-20 DOI: 10.1007/s11120-024-01125-2
James Oluborode, Tamara Chadzinikolau, Magda Formela-Luboińska, Zi-Piao Ye, Piotr Robakowski

Evergreen conifers thrive in challenging environments by maintaining multiple sets of needles, optimizing photosynthesis even under harsh conditions. This study aimed to investigate the relationships between needle structure, photosynthetic parameters, and age along the light gradient in the crowns of Abies alba, Taxus baccata, and Picea abies. We hypothesized that: (1) Needle structure, photochemical parameters, and photosynthetic pigment content correlate with needle age and light levels in tree crowns. (2) The photosynthetic capacity of ageing needles would decline and adjust to the increasing self-shading of branches. Our results revealed a non-linear increase in the leaf mass-to-area ratio. The maximum quantum yield of photosystem II photochemistry decreased linearly with needle age without reaching levels indicative of photoinhibition. Decreased maximum electron transport rates (ETRmax) were linked to declining values of saturating photosynthetic photon flux density and increasing non-photochemical quenching of fluorescence (NPQ), indicating energy losses as heat. The chlorophyll a to chlorophyll b ratio linearly decreased, suggesting older needles sustain high light capture efficiency. These findings offer new insights into the combined effects of needle ageing and self-shading on photochemistry and pigment content. This functional needle balance highlights the trade-off between the costs of long-term needle retention and the benefits of efficient resource utilization. In environments where air temperature is less of a constraint on photosynthesis due to climate warming, evergreen coniferous trees could sustain or enhance their photosynthetic capacity. They can achieve this by shortening needle lifespan and retaining fewer cohorts of needles with higher ETRmax and lower NPQ compared to older needles.

常绿针叶树通过维持多套针叶,在恶劣条件下优化光合作用,在充满挑战的环境中茁壮成长。研究了白冷杉(Abies alba)、红豆杉(Taxus baccata)和云杉(Picea Abies)冠的针叶结构、光合参数和年龄在光梯度上的关系。我们假设:(1)树冠针叶结构、光化学参数和光合色素含量与针叶年龄和光照水平相关。(2)衰老针叶的光合能力会随着枝条自遮阳的增加而下降和调整。结果表明,叶片质量面积比呈非线性增长。光系统II光化学的最大量子产率随针龄线性下降,但未达到指示光抑制的水平。最大电子传递速率(ETRmax)的降低与饱和光合光子通量密度的下降和荧光非光化学猝灭(NPQ)的增加有关,这表明能量损失为热量。叶绿素a与叶绿素b的比值线性下降,说明老针叶保持较高的光捕获效率。这些发现为针尖老化和自遮光对光化学和色素含量的综合影响提供了新的见解。这种功能性针头平衡强调了长期针头保留的成本和有效资源利用的好处之间的权衡。在气候变暖导致气温对光合作用限制较小的环境中,常绿针叶树可以维持或增强其光合能力。与旧针头相比,他们可以通过缩短针头寿命和保留更少的具有更高ETRmax和更低NPQ的针头来实现这一目标。
{"title":"Adaptive significance of age- and light-related variation in needle structure, photochemistry, and pigments in evergreen coniferous trees.","authors":"James Oluborode, Tamara Chadzinikolau, Magda Formela-Luboińska, Zi-Piao Ye, Piotr Robakowski","doi":"10.1007/s11120-024-01125-2","DOIUrl":"10.1007/s11120-024-01125-2","url":null,"abstract":"<p><p>Evergreen conifers thrive in challenging environments by maintaining multiple sets of needles, optimizing photosynthesis even under harsh conditions. This study aimed to investigate the relationships between needle structure, photosynthetic parameters, and age along the light gradient in the crowns of Abies alba, Taxus baccata, and Picea abies. We hypothesized that: (1) Needle structure, photochemical parameters, and photosynthetic pigment content correlate with needle age and light levels in tree crowns. (2) The photosynthetic capacity of ageing needles would decline and adjust to the increasing self-shading of branches. Our results revealed a non-linear increase in the leaf mass-to-area ratio. The maximum quantum yield of photosystem II photochemistry decreased linearly with needle age without reaching levels indicative of photoinhibition. Decreased maximum electron transport rates (ETR<sub>max</sub>) were linked to declining values of saturating photosynthetic photon flux density and increasing non-photochemical quenching of fluorescence (NPQ), indicating energy losses as heat. The chlorophyll a to chlorophyll b ratio linearly decreased, suggesting older needles sustain high light capture efficiency. These findings offer new insights into the combined effects of needle ageing and self-shading on photochemistry and pigment content. This functional needle balance highlights the trade-off between the costs of long-term needle retention and the benefits of efficient resource utilization. In environments where air temperature is less of a constraint on photosynthesis due to climate warming, evergreen coniferous trees could sustain or enhance their photosynthetic capacity. They can achieve this by shortening needle lifespan and retaining fewer cohorts of needles with higher ETR<sub>max</sub> and lower NPQ compared to older needles.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":"163 1","pages":"3"},"PeriodicalIF":2.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11659335/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142865127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Primary charge separation in Chloroflexus aurantiacus reaction centers at room temperature: ultrafast transient absorption measurements on QA-depleted preparations with native and chemically modified bacteriopheophytin composition. 室温下金银花反应中心的一次电荷分离:用天然和化学修饰的菌生素组成的qa贫制剂的超快瞬态吸收测量。
IF 2.9 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2025-02-01 Epub Date: 2024-12-19 DOI: 10.1007/s11120-024-01122-5
Alexey A Zabelin, Vyacheslav B Kovalev, Anton M Khristin, Ravil A Khatypov, Anatoly Ya Shkuropatov

The initial electron transfer (ET) processes in reaction centers (RCs) of Chloroflexus (Cfl.) aurantiacus were studied at 295 K using femtosecond transient absorption (TA) difference spectroscopy. Particular attention was paid to the decay kinetics of the primary electron donor excited state (P*) and the formation/decay of the absorption band of the monomeric bacteriochlorophyll a anion (BA-) at ~ 1035 nm, which reflects the dynamics of the charge-separated state P+BA-. It was found that in QA-depleted RCs containing native bacteriopheophytin a (BPheo) molecules at the HA and HB binding sites, the decay of P* to form the P+HA- state contains a fast (4 ps; relative amplitude 70%) and a slow (13 ps; relative amplitude 30%) kinetic components. The BA- absorption band at ~ 1035 nm was detected only for the fast component. Based on global analysis of the TA data, the results are discussed in terms of the presence of two P* populations: in one, P* decays in 4 ps via a dominant two-step activationless P* → P+BA- → P+HA- ET with a contribution of 70% to the overall primary charge separation process, and in the other, P* decays in 13 ps via a one-step superexchange P* → P+HA- ET (contribution of 30%). Similar femtosecond TA measurements on QA-depleted-PheoA-modified RCs, in which the charge separation energetics was changed by replacing BPheo HA with plant pheophytin a, suggest the presence of a P* population where P+HA- formation can occur via a thermally activated two-step ET process.

利用飞秒瞬态吸收(TA)差谱技术研究了295 K温度下金银花反应中心(RCs)的初始电子转移(ET)过程。特别关注了主电子供体激发态(P*)的衰减动力学和单体细菌叶绿素a阴离子(BA-)在~ 1035 nm处吸收带的形成/衰减,这反映了电荷分离态P+BA-的动力学。研究发现,在HA和HB结合位点含有天然细菌ophytin a (BPheo)分子的qa缺失的RCs中,P*衰变形成P+HA-状态包含一个快速的(4ps;相对振幅70%)和缓慢(13 ps;相对振幅30%)动能分量。在~ 1035 nm处只检测到快速组分的BA吸收带。基于对TA数据的整体分析,我们讨论了两种P*居群的存在:一种是P*通过无活化的两步P*→P+BA-→P+HA- ET在4 ps内衰变,对整个初级电荷分离过程的贡献为70%;另一种是P*通过一步超交换P*→P+HA- ET在13 ps内衰变(贡献为30%)。类似的飞秒TA测量结果显示,在qa耗尽- phea修饰的RCs中,电荷分离能量通过用植物叶绿素a取代BPheo HA而改变,表明P*群体的存在,其中P+HA-的形成可以通过热激活的两步ET过程发生。
{"title":"Primary charge separation in Chloroflexus aurantiacus reaction centers at room temperature: ultrafast transient absorption measurements on Q<sub>A</sub>-depleted preparations with native and chemically modified bacteriopheophytin composition.","authors":"Alexey A Zabelin, Vyacheslav B Kovalev, Anton M Khristin, Ravil A Khatypov, Anatoly Ya Shkuropatov","doi":"10.1007/s11120-024-01122-5","DOIUrl":"10.1007/s11120-024-01122-5","url":null,"abstract":"<p><p>The initial electron transfer (ET) processes in reaction centers (RCs) of Chloroflexus (Cfl.) aurantiacus were studied at 295 K using femtosecond transient absorption (TA) difference spectroscopy. Particular attention was paid to the decay kinetics of the primary electron donor excited state (P<sup>*</sup>) and the formation/decay of the absorption band of the monomeric bacteriochlorophyll a anion (B<sub>A</sub><sup>-</sup>) at ~ 1035 nm, which reflects the dynamics of the charge-separated state P<sup>+</sup>B<sub>A</sub><sup>-</sup>. It was found that in Q<sub>A</sub>-depleted RCs containing native bacteriopheophytin a (BPheo) molecules at the H<sub>A</sub> and H<sub>B</sub> binding sites, the decay of P<sup>*</sup> to form the P<sup>+</sup>H<sub>A</sub><sup>-</sup> state contains a fast (4 ps; relative amplitude 70%) and a slow (13 ps; relative amplitude 30%) kinetic components. The B<sub>A</sub><sup>-</sup> absorption band at ~ 1035 nm was detected only for the fast component. Based on global analysis of the TA data, the results are discussed in terms of the presence of two P<sup>*</sup> populations: in one, P<sup>*</sup> decays in 4 ps via a dominant two-step activationless P<sup>*</sup> → P<sup>+</sup>B<sub>A</sub><sup>-</sup> → P<sup>+</sup>H<sub>A</sub><sup>-</sup> ET with a contribution of 70% to the overall primary charge separation process, and in the other, P<sup>*</sup> decays in 13 ps via a one-step superexchange P<sup>*</sup> → P<sup>+</sup>H<sub>A</sub><sup>-</sup> ET (contribution of 30%). Similar femtosecond TA measurements on Q<sub>A</sub>-depleted-Pheo<sub>A</sub>-modified RCs, in which the charge separation energetics was changed by replacing BPheo H<sub>A</sub> with plant pheophytin a, suggest the presence of a P<sup>*</sup> population where P<sup>+</sup>H<sub>A</sub><sup>-</sup> formation can occur via a thermally activated two-step ET process.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":"163 1","pages":"2"},"PeriodicalIF":2.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142855098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Elucidating light-induced changes in excitation energy transfer of photosystem I and II in whole cells of two model cyanobacteria. 阐明两种模式蓝藻全细胞光系统I和II激发能传递的光诱导变化。
IF 2.9 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2025-02-01 Epub Date: 2024-12-16 DOI: 10.1007/s11120-024-01124-3
Sandeep Biswas, Dariusz M Niedzwiedzki, Himadri B Pakrasi

Excitation energy transfer between the photochemically active protein complexes is key for photosynthetic processes. Phototrophic organisms like cyanobacteria experience subtle changes in irradiance under natural conditions. Such changes need adjustments to the excitation energy transfer between the photosystems for sustainable growth. Spectroscopic assessments on purified photosystems usually fail to capture these subtle changes. In this study, we examined whole cells from two model cyanobacteria, Synechocystis sp. PCC 6803 and Synechococcus elongatus UTEX 2973, grown under high and low light conditions to decode the high light tolerance of the latter. This allowed us to study photosynthetic machinery in the native state and in this work we particularly focused on the excitation energy transfer within PSII and PSI manifold. Understanding the high-light tolerance mechanism is imperative as it can help design strategies for increasing the light tolerance of cyanobacteria used for carbon neutral bioproduction. Our observations suggest that Synechococcus 2973 employs an uncommon photoprotection strategy, and the absence of hydroxy-echinenone pigment in this strain opens the possibility of an orange carotenoid protein homolog utilizing zeaxanthin as a scavenger of reactive oxygen species to provide photoprotection. Furthermore, the adjustments to the high-light adaptation mechanism involve downregulating the phycobilisome antenna in Synechococcus 2973, but not in Synechocystis 6803. Additionally, the stoichiometric changes to PSII/PSI are more tightly regulated in Synechococcus 2973.

光化学活性蛋白复合物之间的激发能传递是光合过程的关键。像蓝藻这样的光养生物在自然条件下的辐照度会发生微妙的变化。这种变化需要调整光系统之间的激发能传递,以实现可持续的生长。对纯化光系统的光谱评估通常不能捕捉到这些细微的变化。在这项研究中,我们检测了两种模式蓝藻,synechocytis sp. PCC 6803和Synechococcus elongatus UTEX 2973的全细胞,在强光和弱光条件下生长,以解码后者的高耐光性。这使我们能够研究原生状态下的光合作用机制,在这项工作中,我们特别关注了PSII和PSI歧管内的激发能转移。了解高光耐受性机制是必要的,因为它可以帮助设计策略,以提高用于碳中性生物生产的蓝藻的光耐受性。我们的观察结果表明,聚球菌2973采用了一种不常见的光保护策略,并且在该菌株中缺乏羟基松果烯酮色素,这开启了一种橙色类胡萝卜素同源蛋白利用玉米黄质作为活性氧清除剂来提供光保护的可能性。此外,对强光适应机制的调整包括在聚囊球菌2973中下调藻胆酶体天线,而在聚囊球菌6803中没有下调。此外,PSII/PSI的化学计量学变化在聚球菌2973中受到更严格的调控。
{"title":"Elucidating light-induced changes in excitation energy transfer of photosystem I and II in whole cells of two model cyanobacteria.","authors":"Sandeep Biswas, Dariusz M Niedzwiedzki, Himadri B Pakrasi","doi":"10.1007/s11120-024-01124-3","DOIUrl":"10.1007/s11120-024-01124-3","url":null,"abstract":"<p><p>Excitation energy transfer between the photochemically active protein complexes is key for photosynthetic processes. Phototrophic organisms like cyanobacteria experience subtle changes in irradiance under natural conditions. Such changes need adjustments to the excitation energy transfer between the photosystems for sustainable growth. Spectroscopic assessments on purified photosystems usually fail to capture these subtle changes. In this study, we examined whole cells from two model cyanobacteria, Synechocystis sp. PCC 6803 and Synechococcus elongatus UTEX 2973, grown under high and low light conditions to decode the high light tolerance of the latter. This allowed us to study photosynthetic machinery in the native state and in this work we particularly focused on the excitation energy transfer within PSII and PSI manifold. Understanding the high-light tolerance mechanism is imperative as it can help design strategies for increasing the light tolerance of cyanobacteria used for carbon neutral bioproduction. Our observations suggest that Synechococcus 2973 employs an uncommon photoprotection strategy, and the absence of hydroxy-echinenone pigment in this strain opens the possibility of an orange carotenoid protein homolog utilizing zeaxanthin as a scavenger of reactive oxygen species to provide photoprotection. Furthermore, the adjustments to the high-light adaptation mechanism involve downregulating the phycobilisome antenna in Synechococcus 2973, but not in Synechocystis 6803. Additionally, the stoichiometric changes to PSII/PSI are more tightly regulated in Synechococcus 2973.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":" ","pages":"1"},"PeriodicalIF":2.9,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142829713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Participation of spirilloxanthin in excitation energy transfer in reaction centers from purple bacteria Rhodospirillum rubrum.
IF 2.9 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2025-01-27 DOI: 10.1007/s11120-024-01126-1
Andrei G Yakovlev, Alexandra S Taisova

The femtosecond dynamics of energy transfer from light-excited spirilloxanthin (Spx) to bacteriochlorophyll (BChl) a in the reaction centers (RCs) of purple photosynthetic bacteria Rhodospirillum rubrum was studied. According to crio-electron microscopy data, Spx is located near accessory BChl a in the B-branch of cofactors. Spx was excited by 25 fs laser pulses at 490 nm, and difference absorption spectra were recorded in the range 500-700 nm. To reveal the dynamics of individual states, we applied global analysis using different kinetic schemes. We found that the energy transfer Spx → BChl a occurs during 0.22 ps with a low efficiency of ~ 31%. The monomeric BChl a acts as the primary energy acceptor, presumably in the B-branch of cofactors. Then the energy is transferred to the BChl a dimer within 0.25 ps and subsequently used for charge separation. As a result of internal conversion in Spx, the majority (~ 69%) of the excitation energy transfers in 0.2 ps from the singlet-excited state S2 to the states S1 and S*, which, in turn, relax to the ground state in 1.5 and 9 ps, ​​respectively. We showed that the S1 and S* states in Spx are not involved in energy transfer to BChl a. The found parameters of energy transfer Spx→BChl a turned out to be close to those in the light-harvesting complexes LH1 of Rhodospirillum rubrum. The sequence of events in Spx after its excitation is discussed.

{"title":"Participation of spirilloxanthin in excitation energy transfer in reaction centers from purple bacteria Rhodospirillum rubrum.","authors":"Andrei G Yakovlev, Alexandra S Taisova","doi":"10.1007/s11120-024-01126-1","DOIUrl":"https://doi.org/10.1007/s11120-024-01126-1","url":null,"abstract":"<p><p>The femtosecond dynamics of energy transfer from light-excited spirilloxanthin (Spx) to bacteriochlorophyll (BChl) a in the reaction centers (RCs) of purple photosynthetic bacteria Rhodospirillum rubrum was studied. According to crio-electron microscopy data, Spx is located near accessory BChl a in the B-branch of cofactors. Spx was excited by 25 fs laser pulses at 490 nm, and difference absorption spectra were recorded in the range 500-700 nm. To reveal the dynamics of individual states, we applied global analysis using different kinetic schemes. We found that the energy transfer Spx → BChl a occurs during 0.22 ps with a low efficiency of ~ 31%. The monomeric BChl a acts as the primary energy acceptor, presumably in the B-branch of cofactors. Then the energy is transferred to the BChl a dimer within 0.25 ps and subsequently used for charge separation. As a result of internal conversion in Spx, the majority (~ 69%) of the excitation energy transfers in 0.2 ps from the singlet-excited state S<sub>2</sub> to the states S<sub>1</sub> and S*, which, in turn, relax to the ground state in 1.5 and 9 ps, ​​respectively. We showed that the S<sub>1</sub> and S* states in Spx are not involved in energy transfer to BChl a. The found parameters of energy transfer Spx→BChl a turned out to be close to those in the light-harvesting complexes LH1 of Rhodospirillum rubrum. The sequence of events in Spx after its excitation is discussed.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":"163 1","pages":"13"},"PeriodicalIF":2.9,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143053200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biochemical evidence for the diversity of LHCI proteins in PSI-LHCI from the red alga Galdieria sulphuraria NIES-3638.
IF 2.9 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2025-01-27 DOI: 10.1007/s11120-024-01134-1
Ryo Nagao, Haruya Ogawa, Takehiro Suzuki, Naoshi Dohmae, Koji Kato, Yoshiki Nakajima, Jian-Ren Shen

Red algae are photosynthetic eukaryotes whose light-harvesting complexes (LHCs) associate with photosystem I (PSI). In this study, we examined characteristics of PSI-LHCI, PSI, and LHCI isolated from the red alga Galdieria sulphuraria NIES-3638. The PSI-LHCI supercomplexes were purified using anion-exchange chromatography followed by hydrophobic-interaction chromatography, and finally by trehalose density gradient centrifugation. PSI and LHCI were similarly prepared following the dissociation of PSI-LHCI with Anzergent 3-16. Polypeptide analysis of PSI-LHCI revealed the presence of PSI and LHC proteins, along with red-lineage chlorophyll a/b-binding-like protein (RedCAP), which is distinct from LHC proteins within the LHC protein superfamily. RedCAP, rather than LHC proteins, exhibited tight binding to PSI. Carotenoid analysis of LHCI identified zeaxanthin, β-cryptoxanthin, and β-carotene, with zeaxanthin particularly enriched, which is consistent with other red algal LHCIs. A Qy peak of chlorophyll a in the LHCI absorption spectrum was blue-shifted compared with those of PSI-LHCI and PSI, and a fluorescence emission peak was similarly shifted to shorter wavelengths. Based on these results, we discuss the diversity of LHC proteins and RedCAP in red algal PSI-LHCI supercomplexes.

{"title":"Biochemical evidence for the diversity of LHCI proteins in PSI-LHCI from the red alga Galdieria sulphuraria NIES-3638.","authors":"Ryo Nagao, Haruya Ogawa, Takehiro Suzuki, Naoshi Dohmae, Koji Kato, Yoshiki Nakajima, Jian-Ren Shen","doi":"10.1007/s11120-024-01134-1","DOIUrl":"https://doi.org/10.1007/s11120-024-01134-1","url":null,"abstract":"<p><p>Red algae are photosynthetic eukaryotes whose light-harvesting complexes (LHCs) associate with photosystem I (PSI). In this study, we examined characteristics of PSI-LHCI, PSI, and LHCI isolated from the red alga Galdieria sulphuraria NIES-3638. The PSI-LHCI supercomplexes were purified using anion-exchange chromatography followed by hydrophobic-interaction chromatography, and finally by trehalose density gradient centrifugation. PSI and LHCI were similarly prepared following the dissociation of PSI-LHCI with Anzergent 3-16. Polypeptide analysis of PSI-LHCI revealed the presence of PSI and LHC proteins, along with red-lineage chlorophyll a/b-binding-like protein (RedCAP), which is distinct from LHC proteins within the LHC protein superfamily. RedCAP, rather than LHC proteins, exhibited tight binding to PSI. Carotenoid analysis of LHCI identified zeaxanthin, β-cryptoxanthin, and β-carotene, with zeaxanthin particularly enriched, which is consistent with other red algal LHCIs. A Qy peak of chlorophyll a in the LHCI absorption spectrum was blue-shifted compared with those of PSI-LHCI and PSI, and a fluorescence emission peak was similarly shifted to shorter wavelengths. Based on these results, we discuss the diversity of LHC proteins and RedCAP in red algal PSI-LHCI supercomplexes.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":"163 1","pages":"14"},"PeriodicalIF":2.9,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143053197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction to: Adaptive significance of age- and light-related variation in needle structure, photochemistry, and pigments in evergreen coniferous trees.
IF 2.9 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2025-01-23 DOI: 10.1007/s11120-025-01137-6
James Oluborode, Tamara Chadzinikolau, Magda Formela-Luboińska, Zi-Piao Ye, Piotr Robakowski
{"title":"Correction to: Adaptive significance of age- and light-related variation in needle structure, photochemistry, and pigments in evergreen coniferous trees.","authors":"James Oluborode, Tamara Chadzinikolau, Magda Formela-Luboińska, Zi-Piao Ye, Piotr Robakowski","doi":"10.1007/s11120-025-01137-6","DOIUrl":"10.1007/s11120-025-01137-6","url":null,"abstract":"","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":"163 1","pages":"12"},"PeriodicalIF":2.9,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759311/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143029264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo two-photon FLIM resolves photosynthetic properties of maize bundle sheath cells. 体内双光子FLIM分析了玉米束鞘细胞的光合特性。
IF 2.9 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2025-01-21 DOI: 10.1007/s11120-024-01135-0
Zhufeng Chen, Jing Li, Bai-Chen Wang, Lijin Tian

Maize (Zea mays L.) performs highly efficient C4 photosynthesis by dividing photosynthetic metabolism between mesophyll and bundle sheath cells. In vivo physiological measurements are indispensable for C4 photosynthesis research as photosynthetic activities are easily interrupted by leaf section or cell isolation. Yet, direct in vivo observation regarding bundle sheath cells in the delicate anatomy of the C4 leaf is still challenging. In the current work, we used two-photon fluorescence-lifetime imaging microscopy (two-photon-FLIM) to access the photosynthetic properties of bundle sheath cells on intact maize leaves. The results provide spectroscopic evidence for the diminished total PSII activity in bundle sheath cells at its physiological level and show that the single PSIIs could undergo charge separation as usual. We also report an acetic acid-induced chlorophyll fluorescence quenching on intact maize leaves, which might be a physiological state related to the nonphotochemical quenching mechanism.

玉米(Zea mays L.)通过在叶肉细胞和束鞘细胞之间分配光合代谢来进行高效的C4光合作用。体内生理测量对于C4光合作用的研究是必不可少的,因为光合作用活动很容易因叶片切片或细胞分离而中断。然而,直接在体内观察C4叶片精细解剖中的束鞘细胞仍然具有挑战性。在当前的工作中,我们使用双光子荧光寿命成像显微镜(two-photon- flim)来获取完整玉米叶片上束鞘细胞的光合特性。结果为束鞘细胞PSII活性在生理水平上降低提供了光谱证据,表明单个PSII可以像往常一样发生电荷分离。我们还报道了在完整的玉米叶片上醋酸诱导的叶绿素荧光猝灭,这可能是一种与非光化学猝灭机制有关的生理状态。
{"title":"In vivo two-photon FLIM resolves photosynthetic properties of maize bundle sheath cells.","authors":"Zhufeng Chen, Jing Li, Bai-Chen Wang, Lijin Tian","doi":"10.1007/s11120-024-01135-0","DOIUrl":"https://doi.org/10.1007/s11120-024-01135-0","url":null,"abstract":"<p><p>Maize (Zea mays L.) performs highly efficient C<sub>4</sub> photosynthesis by dividing photosynthetic metabolism between mesophyll and bundle sheath cells. In vivo physiological measurements are indispensable for C<sub>4</sub> photosynthesis research as photosynthetic activities are easily interrupted by leaf section or cell isolation. Yet, direct in vivo observation regarding bundle sheath cells in the delicate anatomy of the C<sub>4</sub> leaf is still challenging. In the current work, we used two-photon fluorescence-lifetime imaging microscopy (two-photon-FLIM) to access the photosynthetic properties of bundle sheath cells on intact maize leaves. The results provide spectroscopic evidence for the diminished total PSII activity in bundle sheath cells at its physiological level and show that the single PSIIs could undergo charge separation as usual. We also report an acetic acid-induced chlorophyll fluorescence quenching on intact maize leaves, which might be a physiological state related to the nonphotochemical quenching mechanism.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":"163 1","pages":"11"},"PeriodicalIF":2.9,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143009765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering hydrogen bonding at tyrosine-201 in the orange carotenoid protein using halogenated analogues. 利用卤化类似物在橙类胡萝卜素蛋白酪氨酸-201上构建氢键。
IF 2.9 3区 生物学 Q2 PLANT SCIENCES Pub Date : 2025-01-20 DOI: 10.1007/s11120-024-01133-2
Georgy V Tsoraev, Antonina Y Bukhanko, Aleksandra A Mamchur, Makar M Surkov, Svetlana V Sidorenko, Marcus Moldenhauer, Hsueh-Wei Tseng, Lada E Petrovskaya, Dmitry A Cherepanov, Ivan V Shelaev, Fedor E Gostev, Anastasia R Blinova, Bella L Grigorenko, Igor A Yaroshevich, Victor A Nadtochenko, Nediljko Budisa, Piotr Kamenski, Thomas Friedrich, Eugene G Maksimov

The Orange Carotenoid Protein (OCP) is a unique water-soluble photoactive protein that plays a critical role in regulating the balance between light harvesting and photoprotective responses in cyanobacteria. The challenge in understanding OCP´s photoactivation mechanism stems from the heterogeneity of the initial configurations of its embedded ketocarotenoid, which in the dark-adapted state can form up to two hydrogen bonds to critical amino acids in the protein's C-terminal domain, and the extremely low quantum yield of primary photoproduct formation. While a series of experiments involving point mutations within these contacts helped us to identify these challenges, they did not resolve them. To overcome this, we shifted from classical mutagenesis to the translational introduction of non-canonical amino acid residues into the OCP structure. In this work, we demonstrate that replacing a single meta-hydrogen in tyrosine-201 with a halogen atom (chlorine, bromine, or iodine) leads to targeted modifications in the keto-carotenoid-protein matrix interaction network, both in the dark-adapted state and upon photoactivation. We found that such atomic substitutions allow us to effectively weaken key hydrogen bonds without disrupting protein folding, thereby increasing the yield of OCP photoactivation products. Such genetically encoded chemical modification of individual atoms and their systematic in situ variation in complex protein structures establishes a foundation for transforming OCP into a practical tool for optogenetics and other applications.

橙类胡萝卜素蛋白(OCP)是一种独特的水溶性光活性蛋白,在蓝藻中调节光收集和光保护反应之间的平衡中起着关键作用。了解OCP光激活机制的挑战源于其嵌入的类酮胡萝卜素的初始构型的异质性,在黑暗适应状态下,类酮胡萝卜素可以与蛋白质c端结构域的关键氨基酸形成多达两个氢键,以及初级光产物形成的极低量子产率。虽然一系列涉及这些接触中的点突变的实验帮助我们确定了这些挑战,但它们并没有解决这些挑战。为了克服这一点,我们从经典的诱变转向将非规范氨基酸残基翻译引入OCP结构。在这项工作中,我们证明了用卤素原子(氯、溴或碘)取代酪氨酸-201中的单个元氢会导致酮-类胡萝卜素-蛋白质基质相互作用网络的靶向修饰,无论是在黑暗适应状态下还是在光激活状态下。我们发现这种原子取代使我们能够在不破坏蛋白质折叠的情况下有效地削弱关键氢键,从而提高OCP光活化产物的产量。这种对单个原子的遗传编码化学修饰及其在复杂蛋白质结构中的系统原位变异,为将OCP转化为光遗传学和其他应用的实用工具奠定了基础。
{"title":"Engineering hydrogen bonding at tyrosine-201 in the orange carotenoid protein using halogenated analogues.","authors":"Georgy V Tsoraev, Antonina Y Bukhanko, Aleksandra A Mamchur, Makar M Surkov, Svetlana V Sidorenko, Marcus Moldenhauer, Hsueh-Wei Tseng, Lada E Petrovskaya, Dmitry A Cherepanov, Ivan V Shelaev, Fedor E Gostev, Anastasia R Blinova, Bella L Grigorenko, Igor A Yaroshevich, Victor A Nadtochenko, Nediljko Budisa, Piotr Kamenski, Thomas Friedrich, Eugene G Maksimov","doi":"10.1007/s11120-024-01133-2","DOIUrl":"https://doi.org/10.1007/s11120-024-01133-2","url":null,"abstract":"<p><p>The Orange Carotenoid Protein (OCP) is a unique water-soluble photoactive protein that plays a critical role in regulating the balance between light harvesting and photoprotective responses in cyanobacteria. The challenge in understanding OCP´s photoactivation mechanism stems from the heterogeneity of the initial configurations of its embedded ketocarotenoid, which in the dark-adapted state can form up to two hydrogen bonds to critical amino acids in the protein's C-terminal domain, and the extremely low quantum yield of primary photoproduct formation. While a series of experiments involving point mutations within these contacts helped us to identify these challenges, they did not resolve them. To overcome this, we shifted from classical mutagenesis to the translational introduction of non-canonical amino acid residues into the OCP structure. In this work, we demonstrate that replacing a single meta-hydrogen in tyrosine-201 with a halogen atom (chlorine, bromine, or iodine) leads to targeted modifications in the keto-carotenoid-protein matrix interaction network, both in the dark-adapted state and upon photoactivation. We found that such atomic substitutions allow us to effectively weaken key hydrogen bonds without disrupting protein folding, thereby increasing the yield of OCP photoactivation products. Such genetically encoded chemical modification of individual atoms and their systematic in situ variation in complex protein structures establishes a foundation for transforming OCP into a practical tool for optogenetics and other applications.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":"163 1","pages":"10"},"PeriodicalIF":2.9,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143009762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Photosynthesis Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1