我们所有人的数据和研究中心:为生物医学研究创建一个安全、可扩展和可持续的生态系统。

IF 7 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Annual Review of Biomedical Data Science Pub Date : 2023-08-10 DOI:10.1146/annurev-biodatasci-122120-104825
Kelsey R Mayo, Melissa A Basford, Robert J Carroll, Moira Dillon, Heather Fullen, Jesse Leung, Hiral Master, Shimon Rura, Lina Sulieman, Nan Kennedy, Eric Banks, David Bernick, Asmita Gauchan, Lee Lichtenstein, Brandy M Mapes, Kayla Marginean, Steve L Nyemba, Andrea Ramirez, Charissa Rotundo, Keri Wolfe, Weiyi Xia, Romuladus E Azuine, Robert M Cronin, Joshua C Denny, Abel Kho, Christopher Lunt, Bradley Malin, Karthik Natarajan, Consuelo H Wilkins, Hua Xu, George Hripcsak, Dan M Roden, Anthony A Philippakis, David Glazer, Paul A Harris
{"title":"我们所有人的数据和研究中心:为生物医学研究创建一个安全、可扩展和可持续的生态系统。","authors":"Kelsey R Mayo, Melissa A Basford, Robert J Carroll, Moira Dillon, Heather Fullen, Jesse Leung, Hiral Master, Shimon Rura, Lina Sulieman, Nan Kennedy, Eric Banks, David Bernick, Asmita Gauchan, Lee Lichtenstein, Brandy M Mapes, Kayla Marginean, Steve L Nyemba, Andrea Ramirez, Charissa Rotundo, Keri Wolfe, Weiyi Xia, Romuladus E Azuine, Robert M Cronin, Joshua C Denny, Abel Kho, Christopher Lunt, Bradley Malin, Karthik Natarajan, Consuelo H Wilkins, Hua Xu, George Hripcsak, Dan M Roden, Anthony A Philippakis, David Glazer, Paul A Harris","doi":"10.1146/annurev-biodatasci-122120-104825","DOIUrl":null,"url":null,"abstract":"<p><p>The <i>All of Us</i> Research Program's Data and Research Center (DRC) was established to help acquire, curate, and provide access to one of the world's largest and most diverse datasets for precision medicine research. Already, over 500,000 participants are enrolled in <i>All of Us</i>, 80% of whom are underrepresented in biomedical research, and data are being analyzed by a community of over 2,300 researchers. The DRC created this thriving data ecosystem by collaborating with engaged participants, innovative program partners, and empowered researchers. In this review, we first describe how the DRC is organized to meet the needs of this broad group of stakeholders. We then outline guiding principles, common challenges, and innovative approaches used to build the <i>All of Us</i> data ecosystem. Finally, we share lessons learned to help others navigate important decisions and trade-offs in building a modern biomedical data platform.</p>","PeriodicalId":29775,"journal":{"name":"Annual Review of Biomedical Data Science","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11157478/pdf/","citationCount":"0","resultStr":"{\"title\":\"The <i>All of Us</i> Data and Research Center: Creating a Secure, Scalable, and Sustainable Ecosystem for Biomedical Research.\",\"authors\":\"Kelsey R Mayo, Melissa A Basford, Robert J Carroll, Moira Dillon, Heather Fullen, Jesse Leung, Hiral Master, Shimon Rura, Lina Sulieman, Nan Kennedy, Eric Banks, David Bernick, Asmita Gauchan, Lee Lichtenstein, Brandy M Mapes, Kayla Marginean, Steve L Nyemba, Andrea Ramirez, Charissa Rotundo, Keri Wolfe, Weiyi Xia, Romuladus E Azuine, Robert M Cronin, Joshua C Denny, Abel Kho, Christopher Lunt, Bradley Malin, Karthik Natarajan, Consuelo H Wilkins, Hua Xu, George Hripcsak, Dan M Roden, Anthony A Philippakis, David Glazer, Paul A Harris\",\"doi\":\"10.1146/annurev-biodatasci-122120-104825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The <i>All of Us</i> Research Program's Data and Research Center (DRC) was established to help acquire, curate, and provide access to one of the world's largest and most diverse datasets for precision medicine research. Already, over 500,000 participants are enrolled in <i>All of Us</i>, 80% of whom are underrepresented in biomedical research, and data are being analyzed by a community of over 2,300 researchers. The DRC created this thriving data ecosystem by collaborating with engaged participants, innovative program partners, and empowered researchers. In this review, we first describe how the DRC is organized to meet the needs of this broad group of stakeholders. We then outline guiding principles, common challenges, and innovative approaches used to build the <i>All of Us</i> data ecosystem. Finally, we share lessons learned to help others navigate important decisions and trade-offs in building a modern biomedical data platform.</p>\",\"PeriodicalId\":29775,\"journal\":{\"name\":\"Annual Review of Biomedical Data Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11157478/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Biomedical Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-biodatasci-122120-104825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1146/annurev-biodatasci-122120-104825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

我们所有人研究计划的数据和研究中心(DRC)成立的目的是帮助获取、策划和访问世界上最大、最多样化的精准医学研究数据集之一。已经有超过50万名参与者参加了All of Us,其中80%在生物医学研究中的代表性不足,2300多名研究人员正在分析数据。DRC通过与参与者、创新项目合作伙伴和有能力的研究人员合作,创建了这个蓬勃发展的数据生态系统。在这篇综述中,我们首先描述了刚果民主共和国是如何组织起来以满足这一广泛利益相关者群体的需求的。然后,我们概述了用于构建All of Us数据生态系统的指导原则、共同挑战和创新方法。最后,我们分享经验教训,帮助其他人在构建现代生物医学数据平台时做出重要决策和权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The All of Us Data and Research Center: Creating a Secure, Scalable, and Sustainable Ecosystem for Biomedical Research.

The All of Us Research Program's Data and Research Center (DRC) was established to help acquire, curate, and provide access to one of the world's largest and most diverse datasets for precision medicine research. Already, over 500,000 participants are enrolled in All of Us, 80% of whom are underrepresented in biomedical research, and data are being analyzed by a community of over 2,300 researchers. The DRC created this thriving data ecosystem by collaborating with engaged participants, innovative program partners, and empowered researchers. In this review, we first describe how the DRC is organized to meet the needs of this broad group of stakeholders. We then outline guiding principles, common challenges, and innovative approaches used to build the All of Us data ecosystem. Finally, we share lessons learned to help others navigate important decisions and trade-offs in building a modern biomedical data platform.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.10
自引率
1.70%
发文量
0
期刊介绍: The Annual Review of Biomedical Data Science provides comprehensive expert reviews in biomedical data science, focusing on advanced methods to store, retrieve, analyze, and organize biomedical data and knowledge. The scope of the journal encompasses informatics, computational, artificial intelligence (AI), and statistical approaches to biomedical data, including the sub-fields of bioinformatics, computational biology, biomedical informatics, clinical and clinical research informatics, biostatistics, and imaging informatics. The mission of the journal is to identify both emerging and established areas of biomedical data science, and the leaders in these fields.
期刊最新文献
The Evolutionary Interplay of Somatic and Germline Mutation Rates. Centralized and Federated Models for the Analysis of Clinical Data. Mapping the Human Cell Surface Interactome: A Key to Decode Cell-to-Cell Communication. Data Science Methods for Real-World Evidence Generation in Real-World Data. Graph Artificial Intelligence in Medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1