膜受体和配体的顺式半胱氨酸相互作用。

IF 11.4 1区 生物学 Q1 CELL BIOLOGY Annual review of cell and developmental biology Pub Date : 2023-10-16 Epub Date: 2023-06-20 DOI:10.1146/annurev-cellbio-120420-103941
Enfu Hui
{"title":"膜受体和配体的顺式半胱氨酸相互作用。","authors":"Enfu Hui","doi":"10.1146/annurev-cellbio-120420-103941","DOIUrl":null,"url":null,"abstract":"<p><p>Cell-cell communication is critical for the development and function of multicellular organisms. A crucial means by which cells communicate with one another is physical interactions between receptors on one cell and their ligands on a neighboring cell. <i>Trans</i> ligand:receptor interactions activate the receptor, ultimately leading to changes in the fate of the receptor-expressing cells. Such <i>trans</i> signaling is known to be critical for the functions of cells in the nervous and immune systems, among others. Historically, <i>trans</i> interactions are the primary conceptual framework for understanding cell-cell communication. However, cells often coexpress many receptors and ligands, and a subset of these has been reported to interact in <i>cis</i> and profoundly impact cell functions. <i>Cis</i> interactions likely constitute a fundamental, understudied regulatory mechanism in cell biology. Here, I discuss how <i>cis</i> interactions between membrane receptors and ligands regulate immune cell functions, and I also highlight outstanding questions in the field.</p>","PeriodicalId":7944,"journal":{"name":"Annual review of cell and developmental biology","volume":null,"pages":null},"PeriodicalIF":11.4000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"<i>Cis</i> Interactions of Membrane Receptors and Ligands.\",\"authors\":\"Enfu Hui\",\"doi\":\"10.1146/annurev-cellbio-120420-103941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cell-cell communication is critical for the development and function of multicellular organisms. A crucial means by which cells communicate with one another is physical interactions between receptors on one cell and their ligands on a neighboring cell. <i>Trans</i> ligand:receptor interactions activate the receptor, ultimately leading to changes in the fate of the receptor-expressing cells. Such <i>trans</i> signaling is known to be critical for the functions of cells in the nervous and immune systems, among others. Historically, <i>trans</i> interactions are the primary conceptual framework for understanding cell-cell communication. However, cells often coexpress many receptors and ligands, and a subset of these has been reported to interact in <i>cis</i> and profoundly impact cell functions. <i>Cis</i> interactions likely constitute a fundamental, understudied regulatory mechanism in cell biology. Here, I discuss how <i>cis</i> interactions between membrane receptors and ligands regulate immune cell functions, and I also highlight outstanding questions in the field.</p>\",\"PeriodicalId\":7944,\"journal\":{\"name\":\"Annual review of cell and developmental biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2023-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of cell and developmental biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-cellbio-120420-103941\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/6/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of cell and developmental biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-cellbio-120420-103941","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细胞间通讯对多细胞生物的发育和功能至关重要。细胞相互交流的一个关键手段是一个细胞上的受体和相邻细胞上的配体之间的物理相互作用。反式配体:受体相互作用激活受体,最终导致受体表达细胞命运的改变。众所周知,这种反式信号传导对神经和免疫系统中细胞的功能至关重要。从历史上看,跨体相互作用是理解细胞间通信的主要概念框架。然而,细胞通常共表达许多受体和配体,据报道,其中一个子集以顺式相互作用,并深刻影响细胞功能。Cis相互作用可能构成细胞生物学中一种基本的、研究不足的调节机制。在这里,我讨论了膜受体和配体之间的顺式相互作用如何调节免疫细胞功能,我还强调了该领域悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cis Interactions of Membrane Receptors and Ligands.

Cell-cell communication is critical for the development and function of multicellular organisms. A crucial means by which cells communicate with one another is physical interactions between receptors on one cell and their ligands on a neighboring cell. Trans ligand:receptor interactions activate the receptor, ultimately leading to changes in the fate of the receptor-expressing cells. Such trans signaling is known to be critical for the functions of cells in the nervous and immune systems, among others. Historically, trans interactions are the primary conceptual framework for understanding cell-cell communication. However, cells often coexpress many receptors and ligands, and a subset of these has been reported to interact in cis and profoundly impact cell functions. Cis interactions likely constitute a fundamental, understudied regulatory mechanism in cell biology. Here, I discuss how cis interactions between membrane receptors and ligands regulate immune cell functions, and I also highlight outstanding questions in the field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.50
自引率
0.00%
发文量
21
期刊介绍: The Annual Review of Cell and Developmental Biology, established in 1985, comprehensively addresses major advancements in cell and developmental biology. Encompassing the structure, function, and organization of cells, as well as the development and evolution of cells in relation to both single and multicellular organisms, the journal explores models and tools of molecular biology. As of the current volume, the journal has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, making all articles published under a CC BY license.
期刊最新文献
Adaptive Cellular Radiations and the Genetic Mechanisms Underlying Animal Nervous System Diversification. Functionalized Protein Binders in Developmental Biology. Dormancy, Quiescence, and Diapause: Savings Accounts for Life. Evolution of Sensory Receptors. Left-Right Asymmetry in Invertebrates: From Molecules to Organisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1