Tatiana S Netterfield, Gerard J Ostheimer, Andrea R Tentner, Brian A Joughin, Alexandra M Dakoyannis, Charvi D Sharma, Peter K Sorger, Kevin A Janes, Douglas A Lauffenburger, Michael B Yaffe
{"title":"双相JNK-Erk信号传导分离拓扑异构酶II抑制诱导的DNA损伤后细胞衰老的诱导和维持。","authors":"Tatiana S Netterfield, Gerard J Ostheimer, Andrea R Tentner, Brian A Joughin, Alexandra M Dakoyannis, Charvi D Sharma, Peter K Sorger, Kevin A Janes, Douglas A Lauffenburger, Michael B Yaffe","doi":"10.1016/j.cels.2023.06.005","DOIUrl":null,"url":null,"abstract":"<p><p>Genotoxic stress in mammalian cells, including those caused by anti-cancer chemotherapy, can induce temporary cell-cycle arrest, DNA damage-induced senescence (DDIS), or apoptotic cell death. Despite obvious clinical importance, it is unclear how the signals emerging from DNA damage are integrated together with other cellular signaling pathways monitoring the cell's environment and/or internal state to control different cell fates. Using single-cell-based signaling measurements combined with tensor partial least square regression (t-PLSR)/principal component analysis (PCA) analysis, we show that JNK and Erk MAPK signaling regulates the initiation of cell senescence through the transcription factor AP-1 at early times after doxorubicin-induced DNA damage and the senescence-associated secretory phenotype (SASP) at late times after damage. These results identify temporally distinct roles for signaling pathways beyond the classic DNA damage response (DDR) that control the cell senescence decision and modulate the tumor microenvironment and reveal fundamental similarities between signaling pathways responsible for oncogene-induced senescence (OIS) and senescence caused by topoisomerase II inhibition. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":54348,"journal":{"name":"Cell Systems","volume":"14 7","pages":"582-604.e10"},"PeriodicalIF":9.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10627503/pdf/","citationCount":"0","resultStr":"{\"title\":\"Biphasic JNK-Erk signaling separates the induction and maintenance of cell senescence after DNA damage induced by topoisomerase II inhibition.\",\"authors\":\"Tatiana S Netterfield, Gerard J Ostheimer, Andrea R Tentner, Brian A Joughin, Alexandra M Dakoyannis, Charvi D Sharma, Peter K Sorger, Kevin A Janes, Douglas A Lauffenburger, Michael B Yaffe\",\"doi\":\"10.1016/j.cels.2023.06.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Genotoxic stress in mammalian cells, including those caused by anti-cancer chemotherapy, can induce temporary cell-cycle arrest, DNA damage-induced senescence (DDIS), or apoptotic cell death. Despite obvious clinical importance, it is unclear how the signals emerging from DNA damage are integrated together with other cellular signaling pathways monitoring the cell's environment and/or internal state to control different cell fates. Using single-cell-based signaling measurements combined with tensor partial least square regression (t-PLSR)/principal component analysis (PCA) analysis, we show that JNK and Erk MAPK signaling regulates the initiation of cell senescence through the transcription factor AP-1 at early times after doxorubicin-induced DNA damage and the senescence-associated secretory phenotype (SASP) at late times after damage. These results identify temporally distinct roles for signaling pathways beyond the classic DNA damage response (DDR) that control the cell senescence decision and modulate the tumor microenvironment and reveal fundamental similarities between signaling pathways responsible for oncogene-induced senescence (OIS) and senescence caused by topoisomerase II inhibition. A record of this paper's transparent peer review process is included in the supplemental information.</p>\",\"PeriodicalId\":54348,\"journal\":{\"name\":\"Cell Systems\",\"volume\":\"14 7\",\"pages\":\"582-604.e10\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10627503/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2023.06.005\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cels.2023.06.005","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Biphasic JNK-Erk signaling separates the induction and maintenance of cell senescence after DNA damage induced by topoisomerase II inhibition.
Genotoxic stress in mammalian cells, including those caused by anti-cancer chemotherapy, can induce temporary cell-cycle arrest, DNA damage-induced senescence (DDIS), or apoptotic cell death. Despite obvious clinical importance, it is unclear how the signals emerging from DNA damage are integrated together with other cellular signaling pathways monitoring the cell's environment and/or internal state to control different cell fates. Using single-cell-based signaling measurements combined with tensor partial least square regression (t-PLSR)/principal component analysis (PCA) analysis, we show that JNK and Erk MAPK signaling regulates the initiation of cell senescence through the transcription factor AP-1 at early times after doxorubicin-induced DNA damage and the senescence-associated secretory phenotype (SASP) at late times after damage. These results identify temporally distinct roles for signaling pathways beyond the classic DNA damage response (DDR) that control the cell senescence decision and modulate the tumor microenvironment and reveal fundamental similarities between signaling pathways responsible for oncogene-induced senescence (OIS) and senescence caused by topoisomerase II inhibition. A record of this paper's transparent peer review process is included in the supplemental information.
Cell SystemsMedicine-Pathology and Forensic Medicine
CiteScore
16.50
自引率
1.10%
发文量
84
审稿时长
42 days
期刊介绍:
In 2015, Cell Systems was founded as a platform within Cell Press to showcase innovative research in systems biology. Our primary goal is to investigate complex biological phenomena that cannot be simply explained by basic mathematical principles. While the physical sciences have long successfully tackled such challenges, we have discovered that our most impactful publications often employ quantitative, inference-based methodologies borrowed from the fields of physics, engineering, mathematics, and computer science. We are committed to providing a home for elegant research that addresses fundamental questions in systems biology.