Vedrana Đurić, Jelena Petrović, Dušanka Stanić, Ana Ivanović, Jelena Kotur-Stevuljević, Vesna Pešić
{"title":"镁对长时间ACTH诱导的大鼠体内氧化应激和体外DNA损伤有抑制作用。","authors":"Vedrana Đurić, Jelena Petrović, Dušanka Stanić, Ana Ivanović, Jelena Kotur-Stevuljević, Vesna Pešić","doi":"10.1684/mrh.2023.0510","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress, arising from disrupted balance between reactive oxygen/nitrogen species (ROS/RNS) and antioxidant defences, has been implicated in the pathogenesis of stress-related disorders. There is a growing body of evidence that supports the relationship between the activity of the hypothalamic-pituitary-adrenal (HPA) stress system, oxidative stress and magnesium (Mg) homeostasis. The present study aimed to explore the gap in our current understanding of antigenotoxic and protective effects of Mg supplementation against excessive ROS production in male rats during chronic treatment with adrenocorticotropic hormone (ACTH). Our findings show that exposure to exogenous ACTH (10 μg/day, s.c., for 21 days), as one of the key mediators of the HPA axis and stress response, produced an increase in superoxide anion levels and a decrease in superoxide dismutase activity in plasma. We observed that Mg supplementation, starting seven days prior to ACTH treatment and lasting 28 days (300 mg/L of drinking water, per os), abolished these effects in experimental animals. Moreover, our study reveals that ACTH increased the susceptibility of peripheral blood lymphocytes to ex vivo H2O2-induced total and high-level oxidative DNA damage, while Mg completely reversed these effects. Collectively, these results highlight the promising role of Mg in stress-related conditions accompanied by increased oxidative stress in animals and support further investigation using human dietary trials.</p>","PeriodicalId":18159,"journal":{"name":"Magnesium research","volume":"36 1","pages":"1-13"},"PeriodicalIF":1.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnesium suppresses in vivo oxidative stress and ex vivo DNA damage induced by protracted ACTH treatment in rats.\",\"authors\":\"Vedrana Đurić, Jelena Petrović, Dušanka Stanić, Ana Ivanović, Jelena Kotur-Stevuljević, Vesna Pešić\",\"doi\":\"10.1684/mrh.2023.0510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oxidative stress, arising from disrupted balance between reactive oxygen/nitrogen species (ROS/RNS) and antioxidant defences, has been implicated in the pathogenesis of stress-related disorders. There is a growing body of evidence that supports the relationship between the activity of the hypothalamic-pituitary-adrenal (HPA) stress system, oxidative stress and magnesium (Mg) homeostasis. The present study aimed to explore the gap in our current understanding of antigenotoxic and protective effects of Mg supplementation against excessive ROS production in male rats during chronic treatment with adrenocorticotropic hormone (ACTH). Our findings show that exposure to exogenous ACTH (10 μg/day, s.c., for 21 days), as one of the key mediators of the HPA axis and stress response, produced an increase in superoxide anion levels and a decrease in superoxide dismutase activity in plasma. We observed that Mg supplementation, starting seven days prior to ACTH treatment and lasting 28 days (300 mg/L of drinking water, per os), abolished these effects in experimental animals. Moreover, our study reveals that ACTH increased the susceptibility of peripheral blood lymphocytes to ex vivo H2O2-induced total and high-level oxidative DNA damage, while Mg completely reversed these effects. Collectively, these results highlight the promising role of Mg in stress-related conditions accompanied by increased oxidative stress in animals and support further investigation using human dietary trials.</p>\",\"PeriodicalId\":18159,\"journal\":{\"name\":\"Magnesium research\",\"volume\":\"36 1\",\"pages\":\"1-13\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnesium research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1684/mrh.2023.0510\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnesium research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1684/mrh.2023.0510","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Magnesium suppresses in vivo oxidative stress and ex vivo DNA damage induced by protracted ACTH treatment in rats.
Oxidative stress, arising from disrupted balance between reactive oxygen/nitrogen species (ROS/RNS) and antioxidant defences, has been implicated in the pathogenesis of stress-related disorders. There is a growing body of evidence that supports the relationship between the activity of the hypothalamic-pituitary-adrenal (HPA) stress system, oxidative stress and magnesium (Mg) homeostasis. The present study aimed to explore the gap in our current understanding of antigenotoxic and protective effects of Mg supplementation against excessive ROS production in male rats during chronic treatment with adrenocorticotropic hormone (ACTH). Our findings show that exposure to exogenous ACTH (10 μg/day, s.c., for 21 days), as one of the key mediators of the HPA axis and stress response, produced an increase in superoxide anion levels and a decrease in superoxide dismutase activity in plasma. We observed that Mg supplementation, starting seven days prior to ACTH treatment and lasting 28 days (300 mg/L of drinking water, per os), abolished these effects in experimental animals. Moreover, our study reveals that ACTH increased the susceptibility of peripheral blood lymphocytes to ex vivo H2O2-induced total and high-level oxidative DNA damage, while Mg completely reversed these effects. Collectively, these results highlight the promising role of Mg in stress-related conditions accompanied by increased oxidative stress in animals and support further investigation using human dietary trials.
期刊介绍:
Magnesium Research, the official journal of the international Society for the Development of Research on Magnesium (SDRM), has been the benchmark journal on the use of magnesium in biomedicine for more than 30 years.
This quarterly publication provides regular updates on multinational and multidisciplinary research into magnesium, bringing together original experimental and clinical articles, correspondence, Letters to the Editor, comments on latest news, general features, summaries of relevant articles from other journals, and reports and statements from national and international conferences and symposiums.
Indexed in the leading medical databases, Magnesium Research is an essential journal for specialists and general practitioners, for basic and clinical researchers, for practising doctors and academics.