{"title":"肠道双歧杆菌的牛奶糖代谢:比较基因组学的启示。","authors":"Aleksandr A Arzamasov, Andrei L Osterman","doi":"10.1080/10409238.2023.2182272","DOIUrl":null,"url":null,"abstract":"<p><p>Bifidobacteria are early colonizers of the human neonatal gut and provide multiple health benefits to the infant, including inhibiting the growth of enteropathogens and modulating the immune system. Certain <i>Bifidobacterium</i> species prevail in the gut of breastfed infants due to the ability of these microorganisms to selectively forage glycans present in human milk, specifically human milk oligosaccharides (HMOs) and <i>N</i>-linked glycans. Therefore, these carbohydrates serve as promising prebiotic dietary supplements to stimulate the growth of bifidobacteria in the guts of children suffering from impaired gut microbiota development. However, the rational formulation of milk glycan-based prebiotics requires a detailed understanding of how bifidobacteria metabolize these carbohydrates. Accumulating biochemical and genomic data suggest that HMO and <i>N</i>-glycan assimilation abilities vary remarkably within the <i>Bifidobacterium</i> genus, both at the species and strain levels. This review focuses on the delineation and genome-based comparative analysis of differences in respective biochemical pathways, transport systems, and associated transcriptional regulatory networks, providing a foundation for genomics-based projection of milk glycan utilization capabilities across a rapidly growing number of sequenced bifidobacterial genomes and metagenomic datasets. This analysis also highlights remaining knowledge gaps and suggests directions for future studies to optimize the formulation of milk-glycan-based prebiotics that target bifidobacteria.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":"57 5-6","pages":"562-584"},"PeriodicalIF":6.2000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192226/pdf/","citationCount":"0","resultStr":"{\"title\":\"Milk glycan metabolism by intestinal bifidobacteria: insights from comparative genomics.\",\"authors\":\"Aleksandr A Arzamasov, Andrei L Osterman\",\"doi\":\"10.1080/10409238.2023.2182272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bifidobacteria are early colonizers of the human neonatal gut and provide multiple health benefits to the infant, including inhibiting the growth of enteropathogens and modulating the immune system. Certain <i>Bifidobacterium</i> species prevail in the gut of breastfed infants due to the ability of these microorganisms to selectively forage glycans present in human milk, specifically human milk oligosaccharides (HMOs) and <i>N</i>-linked glycans. Therefore, these carbohydrates serve as promising prebiotic dietary supplements to stimulate the growth of bifidobacteria in the guts of children suffering from impaired gut microbiota development. However, the rational formulation of milk glycan-based prebiotics requires a detailed understanding of how bifidobacteria metabolize these carbohydrates. Accumulating biochemical and genomic data suggest that HMO and <i>N</i>-glycan assimilation abilities vary remarkably within the <i>Bifidobacterium</i> genus, both at the species and strain levels. This review focuses on the delineation and genome-based comparative analysis of differences in respective biochemical pathways, transport systems, and associated transcriptional regulatory networks, providing a foundation for genomics-based projection of milk glycan utilization capabilities across a rapidly growing number of sequenced bifidobacterial genomes and metagenomic datasets. This analysis also highlights remaining knowledge gaps and suggests directions for future studies to optimize the formulation of milk-glycan-based prebiotics that target bifidobacteria.</p>\",\"PeriodicalId\":10794,\"journal\":{\"name\":\"Critical Reviews in Biochemistry and Molecular Biology\",\"volume\":\"57 5-6\",\"pages\":\"562-584\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10192226/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10409238.2023.2182272\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/3/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biochemistry and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10409238.2023.2182272","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Milk glycan metabolism by intestinal bifidobacteria: insights from comparative genomics.
Bifidobacteria are early colonizers of the human neonatal gut and provide multiple health benefits to the infant, including inhibiting the growth of enteropathogens and modulating the immune system. Certain Bifidobacterium species prevail in the gut of breastfed infants due to the ability of these microorganisms to selectively forage glycans present in human milk, specifically human milk oligosaccharides (HMOs) and N-linked glycans. Therefore, these carbohydrates serve as promising prebiotic dietary supplements to stimulate the growth of bifidobacteria in the guts of children suffering from impaired gut microbiota development. However, the rational formulation of milk glycan-based prebiotics requires a detailed understanding of how bifidobacteria metabolize these carbohydrates. Accumulating biochemical and genomic data suggest that HMO and N-glycan assimilation abilities vary remarkably within the Bifidobacterium genus, both at the species and strain levels. This review focuses on the delineation and genome-based comparative analysis of differences in respective biochemical pathways, transport systems, and associated transcriptional regulatory networks, providing a foundation for genomics-based projection of milk glycan utilization capabilities across a rapidly growing number of sequenced bifidobacterial genomes and metagenomic datasets. This analysis also highlights remaining knowledge gaps and suggests directions for future studies to optimize the formulation of milk-glycan-based prebiotics that target bifidobacteria.
期刊介绍:
As the discipline of biochemistry and molecular biology have greatly advanced in the last quarter century, significant contributions have been made towards the advancement of general medicine, genetics, immunology, developmental biology, and biophysics. Investigators in a wide range of disciplines increasingly require an appreciation of the significance of current biochemical and molecular biology advances while, members of the biochemical and molecular biology community itself seek concise information on advances in areas remote from their own specialties.
Critical Reviews in Biochemistry and Molecular Biology believes that well-written review articles prove an effective device for the integration and meaningful comprehension of vast, often contradictory, literature. Review articles also provide an opportunity for creative scholarship by synthesizing known facts, fruitful hypotheses, and new concepts. Accordingly, Critical Reviews in Biochemistry and Molecular Biology publishes high-quality reviews that organize, evaluate, and present the current status of high-impact, current issues in the area of biochemistry and molecular biology.
Topics are selected on the advice of an advisory board of outstanding scientists, who also suggest authors of special competence. The topics chosen are sufficiently broad to interest a wide audience of readers, yet focused enough to be within the competence of a single author. Authors are chosen based on their activity in the field and their proven ability to produce a well-written publication.