辅助工艺对线弧增材制造厚壁沉积微观结构和机械性能的影响

IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING 3D Printing and Additive Manufacturing Pub Date : 2023-08-01 Epub Date: 2023-08-09 DOI:10.1089/3dp.2021.0142
Wei Wu, Wei Xu, Jiaxiang Xue, Ping Yao
{"title":"辅助工艺对线弧增材制造厚壁沉积微观结构和机械性能的影响","authors":"Wei Wu, Wei Xu, Jiaxiang Xue, Ping Yao","doi":"10.1089/3dp.2021.0142","DOIUrl":null,"url":null,"abstract":"<p><p>Serious heat accumulation causes poor properties and anisotropy of products in wire and arc additive manufacturing, which restricts the further efficiency in application, especially in double-wire and double-arc depositions. Consequently, this study applied an auxiliary gas process in double-arc additive manufacturing and then compared two 50-layer depositions in morphology, microstructure, and properties to research the influence of the auxiliary process on the forming and performance. The results showed that the auxiliary gas process could improve the deposition morphology, and the efficiency was increased by 24%; moreover, the surface roughness was reduced. As the cooling and stirring effect of the auxiliary gas process, the deposition with the auxiliary gas process mainly presented short axis columnar crystal and less defects on cross-section, which was finally increasing the hardness, tensile strength, and impact toughness and bending force and decreasing the tensile strength anisotropy obviously.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 4","pages":"776-784"},"PeriodicalIF":2.3000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440653/pdf/","citationCount":"0","resultStr":"{\"title\":\"Influence of Auxiliary Process on Microstructure and Mechanical Properties of Wire Arc Additive Manufacturing of Thick Wall Depositions.\",\"authors\":\"Wei Wu, Wei Xu, Jiaxiang Xue, Ping Yao\",\"doi\":\"10.1089/3dp.2021.0142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Serious heat accumulation causes poor properties and anisotropy of products in wire and arc additive manufacturing, which restricts the further efficiency in application, especially in double-wire and double-arc depositions. Consequently, this study applied an auxiliary gas process in double-arc additive manufacturing and then compared two 50-layer depositions in morphology, microstructure, and properties to research the influence of the auxiliary process on the forming and performance. The results showed that the auxiliary gas process could improve the deposition morphology, and the efficiency was increased by 24%; moreover, the surface roughness was reduced. As the cooling and stirring effect of the auxiliary gas process, the deposition with the auxiliary gas process mainly presented short axis columnar crystal and less defects on cross-section, which was finally increasing the hardness, tensile strength, and impact toughness and bending force and decreasing the tensile strength anisotropy obviously.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":\"10 4\",\"pages\":\"776-784\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440653/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2021.0142\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/8/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2021.0142","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/8/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

在线材和电弧增材制造中,严重的热积累会导致产品性能不佳和各向异性,从而限制了进一步的应用效率,尤其是在双线和双弧沉积中。因此,本研究在双弧快速成型制造中应用了辅助气体工艺,然后比较了两种 50 层沉积的形态、微观结构和性能,研究了辅助工艺对成型和性能的影响。结果表明,辅助气体工艺可以改善沉积形态,效率提高了 24%,而且表面粗糙度降低了。由于辅助气体工艺的冷却和搅拌作用,辅助气体工艺下的沉积主要呈短轴柱状晶,截面缺陷较少,最终提高了硬度、抗拉强度、冲击韧性和弯曲力,明显降低了抗拉强度各向异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Auxiliary Process on Microstructure and Mechanical Properties of Wire Arc Additive Manufacturing of Thick Wall Depositions.

Serious heat accumulation causes poor properties and anisotropy of products in wire and arc additive manufacturing, which restricts the further efficiency in application, especially in double-wire and double-arc depositions. Consequently, this study applied an auxiliary gas process in double-arc additive manufacturing and then compared two 50-layer depositions in morphology, microstructure, and properties to research the influence of the auxiliary process on the forming and performance. The results showed that the auxiliary gas process could improve the deposition morphology, and the efficiency was increased by 24%; moreover, the surface roughness was reduced. As the cooling and stirring effect of the auxiliary gas process, the deposition with the auxiliary gas process mainly presented short axis columnar crystal and less defects on cross-section, which was finally increasing the hardness, tensile strength, and impact toughness and bending force and decreasing the tensile strength anisotropy obviously.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3D Printing and Additive Manufacturing
3D Printing and Additive Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
6.00
自引率
6.50%
发文量
126
期刊介绍: 3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.
期刊最新文献
Experimental Study on Interfacial Shear Behavior of 3D Printed Recycled Mortar. Characterizing the Effect of Filament Moisture on Tensile Properties and Morphology of Fused Deposition Modeled Polylactic Acid/Polybutylene Succinate Parts. On the Development of Smart Framework for Printability Maps in Additive Manufacturing of AISI 316L Stainless Steel. Rapid Fabrication of Silica Microlens Arrays via Glass 3D Printing. Simulation of Binder Jetting and Analysis of Magnesium Alloy Bonding Mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1