针对个人风险水平量身定制的最佳乳腺癌风险降低政策。

IF 2.3 3区 医学 Q2 HEALTH POLICY & SERVICES Health Care Management Science Pub Date : 2022-09-01 DOI:10.1007/s10729-022-09596-2
Mehmet A Ergun, Ali Hajjar, Oguzhan Alagoz, Murtuza Rampurwala
{"title":"针对个人风险水平量身定制的最佳乳腺癌风险降低政策。","authors":"Mehmet A Ergun,&nbsp;Ali Hajjar,&nbsp;Oguzhan Alagoz,&nbsp;Murtuza Rampurwala","doi":"10.1007/s10729-022-09596-2","DOIUrl":null,"url":null,"abstract":"<p><p>Depending on personal and hereditary factors, each woman has a different risk of developing breast cancer, one of the leading causes of death for women. For women with a high-risk of breast cancer, their risk can be reduced by two main therapeutic approaches: 1) preventive treatments such as hormonal therapies (i.e., tamoxifen, raloxifene, exemestane); or 2) a risk reduction surgery (i.e., mastectomy). Existing national clinical guidelines either fail to incorporate or have limited use of the personal risk of developing breast cancer in their proposed risk reduction strategies. As a result, they do not provide enough resolution on the benefit-risk trade-off of an intervention policy as personal risk changes. In addressing this problem, we develop a discrete-time, finite-horizon Markov decision process (MDP) model with the objective of maximizing the patient's total expected quality-adjusted life years. We find several useful insights some of which contradict the existing national breast cancer risk reduction recommendations. For example, we find that mastectomy is the optimal choice for the border-line high-risk women who are between ages 22 and 38. Additionally, in contrast to the National Comprehensive Cancer Network recommendations, we find that exemestane is a plausible, in fact, the best, option for high-risk postmenopausal women.</p>","PeriodicalId":12903,"journal":{"name":"Health Care Management Science","volume":"25 3","pages":"363-388"},"PeriodicalIF":2.3000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445480/pdf/nihms-1911145.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimal breast cancer risk reduction policies tailored to personal risk level.\",\"authors\":\"Mehmet A Ergun,&nbsp;Ali Hajjar,&nbsp;Oguzhan Alagoz,&nbsp;Murtuza Rampurwala\",\"doi\":\"10.1007/s10729-022-09596-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Depending on personal and hereditary factors, each woman has a different risk of developing breast cancer, one of the leading causes of death for women. For women with a high-risk of breast cancer, their risk can be reduced by two main therapeutic approaches: 1) preventive treatments such as hormonal therapies (i.e., tamoxifen, raloxifene, exemestane); or 2) a risk reduction surgery (i.e., mastectomy). Existing national clinical guidelines either fail to incorporate or have limited use of the personal risk of developing breast cancer in their proposed risk reduction strategies. As a result, they do not provide enough resolution on the benefit-risk trade-off of an intervention policy as personal risk changes. In addressing this problem, we develop a discrete-time, finite-horizon Markov decision process (MDP) model with the objective of maximizing the patient's total expected quality-adjusted life years. We find several useful insights some of which contradict the existing national breast cancer risk reduction recommendations. For example, we find that mastectomy is the optimal choice for the border-line high-risk women who are between ages 22 and 38. Additionally, in contrast to the National Comprehensive Cancer Network recommendations, we find that exemestane is a plausible, in fact, the best, option for high-risk postmenopausal women.</p>\",\"PeriodicalId\":12903,\"journal\":{\"name\":\"Health Care Management Science\",\"volume\":\"25 3\",\"pages\":\"363-388\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10445480/pdf/nihms-1911145.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Care Management Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10729-022-09596-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEALTH POLICY & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Care Management Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10729-022-09596-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH POLICY & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

根据个人和遗传因素,每个妇女患乳腺癌的风险不同,乳腺癌是妇女死亡的主要原因之一。对于乳腺癌高危妇女,可通过两种主要治疗方法降低其风险:1)预防性治疗,如激素治疗(即他莫昔芬、雷洛昔芬、依西美坦);或者2)降低风险的手术(如乳房切除术)。现有的国家临床指南要么没有将患乳腺癌的个人风险纳入其拟议的降低风险策略中,要么使用有限。因此,随着个人风险的变化,它们不能提供足够的解决方案来权衡干预政策的利益与风险。为了解决这个问题,我们开发了一个离散时间,有限视界马尔可夫决策过程(MDP)模型,其目标是最大化患者的总预期质量调整生命年。我们发现了一些有用的见解,其中一些与现有的国家乳腺癌风险降低建议相矛盾。例如,我们发现乳房切除术是22至38岁之间高危女性的最佳选择。此外,与国家综合癌症网络的建议相反,我们发现依西美坦是一种合理的,事实上,是高风险绝经后妇女的最佳选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal breast cancer risk reduction policies tailored to personal risk level.

Depending on personal and hereditary factors, each woman has a different risk of developing breast cancer, one of the leading causes of death for women. For women with a high-risk of breast cancer, their risk can be reduced by two main therapeutic approaches: 1) preventive treatments such as hormonal therapies (i.e., tamoxifen, raloxifene, exemestane); or 2) a risk reduction surgery (i.e., mastectomy). Existing national clinical guidelines either fail to incorporate or have limited use of the personal risk of developing breast cancer in their proposed risk reduction strategies. As a result, they do not provide enough resolution on the benefit-risk trade-off of an intervention policy as personal risk changes. In addressing this problem, we develop a discrete-time, finite-horizon Markov decision process (MDP) model with the objective of maximizing the patient's total expected quality-adjusted life years. We find several useful insights some of which contradict the existing national breast cancer risk reduction recommendations. For example, we find that mastectomy is the optimal choice for the border-line high-risk women who are between ages 22 and 38. Additionally, in contrast to the National Comprehensive Cancer Network recommendations, we find that exemestane is a plausible, in fact, the best, option for high-risk postmenopausal women.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Health Care Management Science
Health Care Management Science HEALTH POLICY & SERVICES-
CiteScore
7.20
自引率
5.60%
发文量
40
期刊介绍: Health Care Management Science publishes papers dealing with health care delivery, health care management, and health care policy. Papers should have a decision focus and make use of quantitative methods including management science, operations research, analytics, machine learning, and other emerging areas. Articles must clearly articulate the relevance and the realized or potential impact of the work. Applied research will be considered and is of particular interest if there is evidence that it was implemented or informed a decision-making process. Papers describing routine applications of known methods are discouraged. Authors are encouraged to disclose all data and analyses thereof, and to provide computational code when appropriate. Editorial statements for the individual departments are provided below. Health Care Analytics Departmental Editors: Margrét Bjarnadóttir, University of Maryland Nan Kong, Purdue University With the explosion in computing power and available data, we have seen fast changes in the analytics applied in the healthcare space. The Health Care Analytics department welcomes papers applying a broad range of analytical approaches, including those rooted in machine learning, survival analysis, and complex event analysis, that allow healthcare professionals to find opportunities for improvement in health system management, patient engagement, spending, and diagnosis. We especially encourage papers that combine predictive and prescriptive analytics to improve decision making and health care outcomes. The contribution of papers can be across multiple dimensions including new methodology, novel modeling techniques and health care through real-world cohort studies. Papers that are methodologically focused need in addition to show practical relevance. Similarly papers that are application focused should clearly demonstrate improvements over the status quo and available approaches by applying rigorous analytics. Health Care Operations Management Departmental Editors: Nilay Tanik Argon, University of North Carolina at Chapel Hill Bob Batt, University of Wisconsin The department invites high-quality papers on the design, control, and analysis of operations at healthcare systems. We seek papers on classical operations management issues (such as scheduling, routing, queuing, transportation, patient flow, and quality) as well as non-traditional problems driven by everchanging healthcare practice. Empirical, experimental, and analytical (model based) methodologies are all welcome. Papers may draw theory from across disciplines, and should provide insight into improving operations from the perspective of patients, service providers, organizations (municipal/government/industry), and/or society. Health Care Management Science Practice Departmental Editor: Vikram Tiwari, Vanderbilt University Medical Center The department seeks research from academicians and practitioners that highlights Management Science based solutions directly relevant to the practice of healthcare. Relevance is judged by the impact on practice, as well as the degree to which researchers engaged with practitioners in understanding the problem context and in developing the solution. Validity, that is, the extent to which the results presented do or would apply in practice is a key evaluation criterion. In addition to meeting the journal’s standards of originality and substantial contribution to knowledge creation, research that can be replicated in other organizations is encouraged. Papers describing unsuccessful applied research projects may be considered if there are generalizable learning points addressing why the project was unsuccessful. Health Care Productivity Analysis Departmental Editor: Jonas Schreyögg, University of Hamburg The department invites papers with rigorous methods and significant impact for policy and practice. Papers typically apply theory and techniques to measuring productivity in health care organizations and systems. The journal welcomes state-of-the-art parametric as well as non-parametric techniques such as data envelopment analysis, stochastic frontier analysis or partial frontier analysis. The contribution of papers can be manifold including new methodology, novel combination of existing methods or application of existing methods to new contexts. Empirical papers should produce results generalizable beyond a selected set of health care organizations. All papers should include a section on implications for management or policy to enhance productivity. Public Health Policy and Medical Decision Making Departmental Editors: Ebru Bish, University of Alabama Julie L. Higle, University of Southern California The department invites high quality papers that use data-driven methods to address important problems that arise in public health policy and medical decision-making domains. We welcome submissions that develop and apply mathematical and computational models in support of data-driven and model-based analyses for these problems. The Public Health Policy and Medical Decision-Making Department is particularly interested in papers that: Study high-impact problems involving health policy, treatment planning and design, and clinical applications; Develop original data-driven models, including those that integrate disease modeling with screening and/or treatment guidelines; Use model-based analyses as decision making-tools to identify optimal solutions, insights, recommendations. Articles must clearly articulate the relevance of the work to decision and/or policy makers and the potential impact on patients and/or society. Papers will include articulated contributions within the methodological domain, which may include modeling, analytical, or computational methodologies. Emerging Topics Departmental Editor: Alec Morton, University of Strathclyde Emerging Topics will handle papers which use innovative quantitative methods to shed light on frontier issues in healthcare management and policy. Such papers may deal with analytic challenges arising from novel health technologies or new organizational forms. Papers falling under this department may also deal with the analysis of new forms of data which are increasingly captured as health systems become more and more digitized.
期刊最新文献
Assessing the performance of Portuguese public hospitals before and during COVID-19 outbreak, with optimistic and pessimistic benchmarking approaches. A reinforcement learning approach for the online dynamic home health care scheduling problem. Evaluating machine learning model bias and racial disparities in non-small cell lung cancer using SEER registry data. Forecasting to support EMS tactical planning: what is important and what is not. Health care management science for underserved populations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1