利用深度学习自动预测 ADPKD 患者肾功能衰退情况

IF 2.4 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Zeitschrift fur Medizinische Physik Pub Date : 2024-05-01 DOI:10.1016/j.zemedi.2023.08.001
Anish Raj , Fabian Tollens , Anna Caroli , Dominik Nörenberg , Frank G. Zöllner
{"title":"利用深度学习自动预测 ADPKD 患者肾功能衰退情况","authors":"Anish Raj ,&nbsp;Fabian Tollens ,&nbsp;Anna Caroli ,&nbsp;Dominik Nörenberg ,&nbsp;Frank G. Zöllner","doi":"10.1016/j.zemedi.2023.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>An accurate prognosis of renal function decline in Autosomal Dominant Polycystic Kidney Disease (ADPKD) is crucial for early intervention. Current biomarkers used are height-adjusted total kidney volume (HtTKV), estimated glomerular filtration rate (eGFR), and patient age. However, manually measuring kidney volume is time-consuming and subject to observer variability. Additionally, incorporating automatically generated features from kidney MRI images, along with conventional biomarkers, can enhance prognostic improvement. To address these issues, we developed two deep-learning algorithms. Firstly, an automated kidney volume segmentation model accurately calculates HtTKV. Secondly, we utilize segmented kidney volumes, predicted HtTKV, age, and baseline eGFR to predict chronic kidney disease (CKD) stages <span><math><mrow><mo>&gt;</mo></mrow></math></span>=3A, <span><math><mrow><mo>&gt;</mo></mrow></math></span>=3B, and a 30% decline in eGFR after 8 years from the baseline visit. Our approach combines a convolutional neural network (CNN) and a multi-layer perceptron (MLP). Our study included 135 subjects and the AUC scores obtained were 0.96, 0.96, and 0.95 for CKD stages <span><math><mrow><mo>&gt;</mo></mrow></math></span>=3A, <span><math><mrow><mo>&gt;</mo></mrow></math></span>=3B, and a 30% decline in eGFR, respectively. Furthermore, our algorithm achieved a Pearson correlation coefficient of 0.81 between predicted and measured eGFR decline. We extended our approach to predict distinct CKD stages after eight years with an AUC of 0.97. The proposed approach has the potential to enhance monitoring and facilitate prognosis in ADPKD patients, even in the early disease stages.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"34 2","pages":"Pages 330-342"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388923000909/pdfft?md5=f7bc065601b8dfd2bfb240a0fa1328c0&pid=1-s2.0-S0939388923000909-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Automated prognosis of renal function decline in ADPKD patients using deep learning\",\"authors\":\"Anish Raj ,&nbsp;Fabian Tollens ,&nbsp;Anna Caroli ,&nbsp;Dominik Nörenberg ,&nbsp;Frank G. Zöllner\",\"doi\":\"10.1016/j.zemedi.2023.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An accurate prognosis of renal function decline in Autosomal Dominant Polycystic Kidney Disease (ADPKD) is crucial for early intervention. Current biomarkers used are height-adjusted total kidney volume (HtTKV), estimated glomerular filtration rate (eGFR), and patient age. However, manually measuring kidney volume is time-consuming and subject to observer variability. Additionally, incorporating automatically generated features from kidney MRI images, along with conventional biomarkers, can enhance prognostic improvement. To address these issues, we developed two deep-learning algorithms. Firstly, an automated kidney volume segmentation model accurately calculates HtTKV. Secondly, we utilize segmented kidney volumes, predicted HtTKV, age, and baseline eGFR to predict chronic kidney disease (CKD) stages <span><math><mrow><mo>&gt;</mo></mrow></math></span>=3A, <span><math><mrow><mo>&gt;</mo></mrow></math></span>=3B, and a 30% decline in eGFR after 8 years from the baseline visit. Our approach combines a convolutional neural network (CNN) and a multi-layer perceptron (MLP). Our study included 135 subjects and the AUC scores obtained were 0.96, 0.96, and 0.95 for CKD stages <span><math><mrow><mo>&gt;</mo></mrow></math></span>=3A, <span><math><mrow><mo>&gt;</mo></mrow></math></span>=3B, and a 30% decline in eGFR, respectively. Furthermore, our algorithm achieved a Pearson correlation coefficient of 0.81 between predicted and measured eGFR decline. We extended our approach to predict distinct CKD stages after eight years with an AUC of 0.97. The proposed approach has the potential to enhance monitoring and facilitate prognosis in ADPKD patients, even in the early disease stages.</p></div>\",\"PeriodicalId\":54397,\"journal\":{\"name\":\"Zeitschrift fur Medizinische Physik\",\"volume\":\"34 2\",\"pages\":\"Pages 330-342\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0939388923000909/pdfft?md5=f7bc065601b8dfd2bfb240a0fa1328c0&pid=1-s2.0-S0939388923000909-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Medizinische Physik\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0939388923000909\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Medizinische Physik","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939388923000909","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

准确预测常染色体显性多囊肾病(ADPKD)肾功能衰退对早期干预至关重要。目前使用的生物标志物包括身高调整肾脏总体积(HtTKV)、估计肾小球滤过率(eGFR)和患者年龄。然而,手动测量肾脏体积既费时又受观察者差异性的影响。此外,将肾脏核磁共振成像图像自动生成的特征与传统的生物标志物结合起来,可以提高预后效果。为了解决这些问题,我们开发了两种深度学习算法。首先,自动肾脏体积分割模型可精确计算 HtTKV。其次,我们利用分割后的肾脏体积、预测的 HtTKV、年龄和基线 eGFR 预测慢性肾脏病(CKD)分期>=3A、>=3B 和自基线检查起 8 年后 eGFR 下降 30%。我们的方法结合了卷积神经网络(CNN)和多层感知器(MLP)。我们的研究包括 135 名受试者,对于 CKD 阶段>=3A、>=3B 和 eGFR 下降 30% 的受试者,所获得的 AUC 分数分别为 0.96、0.96 和 0.95。此外,我们的算法在预测和测量的 eGFR 下降之间达到了 0.81 的皮尔逊相关系数。我们扩展了我们的方法,以预测八年后不同的 CKD 阶段,AUC 为 0.97。所提出的方法有望加强对 ADPKD 患者的监测并促进其预后,即使是在疾病的早期阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated prognosis of renal function decline in ADPKD patients using deep learning

An accurate prognosis of renal function decline in Autosomal Dominant Polycystic Kidney Disease (ADPKD) is crucial for early intervention. Current biomarkers used are height-adjusted total kidney volume (HtTKV), estimated glomerular filtration rate (eGFR), and patient age. However, manually measuring kidney volume is time-consuming and subject to observer variability. Additionally, incorporating automatically generated features from kidney MRI images, along with conventional biomarkers, can enhance prognostic improvement. To address these issues, we developed two deep-learning algorithms. Firstly, an automated kidney volume segmentation model accurately calculates HtTKV. Secondly, we utilize segmented kidney volumes, predicted HtTKV, age, and baseline eGFR to predict chronic kidney disease (CKD) stages >=3A, >=3B, and a 30% decline in eGFR after 8 years from the baseline visit. Our approach combines a convolutional neural network (CNN) and a multi-layer perceptron (MLP). Our study included 135 subjects and the AUC scores obtained were 0.96, 0.96, and 0.95 for CKD stages >=3A, >=3B, and a 30% decline in eGFR, respectively. Furthermore, our algorithm achieved a Pearson correlation coefficient of 0.81 between predicted and measured eGFR decline. We extended our approach to predict distinct CKD stages after eight years with an AUC of 0.97. The proposed approach has the potential to enhance monitoring and facilitate prognosis in ADPKD patients, even in the early disease stages.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
10.00%
发文量
69
审稿时长
65 days
期刊介绍: Zeitschrift fur Medizinische Physik (Journal of Medical Physics) is an official organ of the German and Austrian Society of Medical Physic and the Swiss Society of Radiobiology and Medical Physics.The Journal is a platform for basic research and practical applications of physical procedures in medical diagnostics and therapy. The articles are reviewed following international standards of peer reviewing. Focuses of the articles are: -Biophysical methods in radiation therapy and nuclear medicine -Dosimetry and radiation protection -Radiological diagnostics and quality assurance -Modern imaging techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography -Ultrasonography diagnostics, application of laser and UV rays -Electronic processing of biosignals -Artificial intelligence and machine learning in medical physics In the Journal, the latest scientific insights find their expression in the form of original articles, reviews, technical communications, and information for the clinical practice.
期刊最新文献
Source-detector trajectory optimization for CBCT metal artifact reduction based on PICCS reconstruction. Reduction of patient specific quality assurance through plan complexity metrics for VMAT plans with an open-source TPS script. Post-mastectomy radiotherapy: Impact of bolus thickness and irradiation technique on skin dose. Development of a PTV margin for preclinical irradiation of orthotopic pancreatic tumors derived from a well-known recipe for humans. Heterogeneity of absorbed dose distribution in kidney tissues and dose-response modelling of nephrotoxicity in radiopharmaceutical therapy with beta-particle emitters: A review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1