So Young Oh , Alice Château , Anastasia Tomatsidou , Derek Elli, Haley Gula, Olaf Schneewind , Dominique Missiakas
{"title":"模拟胃肠道炭疽病。","authors":"So Young Oh , Alice Château , Anastasia Tomatsidou , Derek Elli, Haley Gula, Olaf Schneewind , Dominique Missiakas","doi":"10.1016/j.resmic.2023.104026","DOIUrl":null,"url":null,"abstract":"<div><p><span><em>Bacillus anthracis</em></span><span> is a spore-forming microbe that persists in soil and causes anthrax disease. The most natural route of infection is ingestion<span> by grazing animals. Gastrointestinal (GI) anthrax also occurs in their monogastric predators, including humans. Exposure of carcasses<span> to oxygen triggers sporulation and contamination of the surrounding soil completing the unusual life cycle of this microbe. The pathogenesis of GI anthrax is poorly characterized. Here, we use </span></span></span><em>B. anthracis</em><span> carrying the virulence plasmids<span> pXO1 and pXO2, to model gastrointestinal disease in Guinea pigs and mice. We find that spores germinate in the GI tract and precipitate disease in a dose-dependent manner. Inoculation of vegetative bacilli also results in GI anthrax. Virulence is impacted severely by the loss of capsule (pXO2-encoded) but only moderately in absence of toxins (pXO1-encoded). Nonetheless, the lack of toxins leads to reduced bacterial replication in infected hosts. </span></span><em>B. cereus</em> Elc4, a strain isolated from a fatal case of inhalational anthrax-like disease, was also found to cause GI anthrax. Because transmission to new hosts depends on the release of large numbers of spores in the environment, we propose that the acquisition of pXO1- and pXO2-like plasmids may promote the successful expansion of members of the <span><em>Bacillus cereus</em><em> sensu lato</em></span> group able to cause anthrax-like disease.</p></div>","PeriodicalId":21098,"journal":{"name":"Research in microbiology","volume":"174 6","pages":"Article 104026"},"PeriodicalIF":2.5000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338639/pdf/","citationCount":"2","resultStr":"{\"title\":\"Modeling gastrointestinal anthrax disease\",\"authors\":\"So Young Oh , Alice Château , Anastasia Tomatsidou , Derek Elli, Haley Gula, Olaf Schneewind , Dominique Missiakas\",\"doi\":\"10.1016/j.resmic.2023.104026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span><em>Bacillus anthracis</em></span><span> is a spore-forming microbe that persists in soil and causes anthrax disease. The most natural route of infection is ingestion<span> by grazing animals. Gastrointestinal (GI) anthrax also occurs in their monogastric predators, including humans. Exposure of carcasses<span> to oxygen triggers sporulation and contamination of the surrounding soil completing the unusual life cycle of this microbe. The pathogenesis of GI anthrax is poorly characterized. Here, we use </span></span></span><em>B. anthracis</em><span> carrying the virulence plasmids<span> pXO1 and pXO2, to model gastrointestinal disease in Guinea pigs and mice. We find that spores germinate in the GI tract and precipitate disease in a dose-dependent manner. Inoculation of vegetative bacilli also results in GI anthrax. Virulence is impacted severely by the loss of capsule (pXO2-encoded) but only moderately in absence of toxins (pXO1-encoded). Nonetheless, the lack of toxins leads to reduced bacterial replication in infected hosts. </span></span><em>B. cereus</em> Elc4, a strain isolated from a fatal case of inhalational anthrax-like disease, was also found to cause GI anthrax. Because transmission to new hosts depends on the release of large numbers of spores in the environment, we propose that the acquisition of pXO1- and pXO2-like plasmids may promote the successful expansion of members of the <span><em>Bacillus cereus</em><em> sensu lato</em></span> group able to cause anthrax-like disease.</p></div>\",\"PeriodicalId\":21098,\"journal\":{\"name\":\"Research in microbiology\",\"volume\":\"174 6\",\"pages\":\"Article 104026\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338639/pdf/\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0923250823000013\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923250823000013","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Bacillus anthracis is a spore-forming microbe that persists in soil and causes anthrax disease. The most natural route of infection is ingestion by grazing animals. Gastrointestinal (GI) anthrax also occurs in their monogastric predators, including humans. Exposure of carcasses to oxygen triggers sporulation and contamination of the surrounding soil completing the unusual life cycle of this microbe. The pathogenesis of GI anthrax is poorly characterized. Here, we use B. anthracis carrying the virulence plasmids pXO1 and pXO2, to model gastrointestinal disease in Guinea pigs and mice. We find that spores germinate in the GI tract and precipitate disease in a dose-dependent manner. Inoculation of vegetative bacilli also results in GI anthrax. Virulence is impacted severely by the loss of capsule (pXO2-encoded) but only moderately in absence of toxins (pXO1-encoded). Nonetheless, the lack of toxins leads to reduced bacterial replication in infected hosts. B. cereus Elc4, a strain isolated from a fatal case of inhalational anthrax-like disease, was also found to cause GI anthrax. Because transmission to new hosts depends on the release of large numbers of spores in the environment, we propose that the acquisition of pXO1- and pXO2-like plasmids may promote the successful expansion of members of the Bacillus cereus sensu lato group able to cause anthrax-like disease.
期刊介绍:
Research in Microbiology is the direct descendant of the original Pasteur periodical entitled Annales de l''Institut Pasteur, created in 1887 by Emile Duclaux under the patronage of Louis Pasteur. The Editorial Committee included Chamberland, Grancher, Nocard, Roux and Straus, and the first issue began with Louis Pasteur''s "Lettre sur la Rage" which clearly defines the spirit of the journal:"You have informed me, my dear Duclaux, that you intend to start a monthly collection of articles entitled "Annales de l''Institut Pasteur". You will be rendering a service that will be appreciated by the ever increasing number of young scientists who are attracted to microbiological studies. In your Annales, our laboratory research will of course occupy a central position, but the work from outside groups that you intend to publish will be a source of competitive stimulation for all of us."That first volume included 53 articles as well as critical reviews and book reviews. From that time on, the Annales appeared regularly every month, without interruption, even during the two world wars. Although the journal has undergone many changes over the past 100 years (in the title, the format, the language) reflecting the evolution in scientific publishing, it has consistently maintained the Pasteur tradition by publishing original reports on all aspects of microbiology.